Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5023530a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5023530a
编写于
9月 10, 2018
作者:
Y
Yan Chunwei
提交者:
GitHub
9月 10, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor/remove sensitive (#13314)
上级
478a4e85
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
21 addition
and
35 deletion
+21
-35
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+8
-8
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+13
-27
未找到文件。
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
5023530a
...
...
@@ -48,18 +48,18 @@ function (inference_download_and_uncompress install_dir url gz_filename)
message
(
STATUS
"finish downloading
${
gz_filename
}
"
)
endfunction
(
inference_download_and_uncompress
)
set
(
DITU_RNN_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid
%2Fmodel.tar.gz"
)
set
(
DITU_RNN_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid
%2Fdata.txt.tar.gz"
)
set
(
DITU_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/ditu_rnn"
CACHE PATH
"Ditu RNN
model and data root."
FORCE
)
if
(
NOT EXISTS
${
DITU
_INSTALL_DIR
}
AND WITH_TESTING
)
inference_download_and_uncompress
(
${
DITU_INSTALL_DIR
}
${
DITU_RNN_MODEL_URL
}
"ditu_rnn_fluid
%2Fmodel.tar.gz"
)
inference_download_and_uncompress
(
${
DITU_INSTALL_DIR
}
${
DITU_RNN_DATA_URL
}
"ditu_rnn_fluid
%2Fdata.txt.tar.gz"
)
set
(
RNN1_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/rnn1
%2Fmodel.tar.gz"
)
set
(
RNN1_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/rnn1
%2Fdata.txt.tar.gz"
)
set
(
RNN1_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/rnn1"
CACHE PATH
"RNN1
model and data root."
FORCE
)
if
(
NOT EXISTS
${
RNN1
_INSTALL_DIR
}
AND WITH_TESTING
)
inference_download_and_uncompress
(
${
RNN1_INSTALL_DIR
}
${
RNN1_MODEL_URL
}
"rnn1
%2Fmodel.tar.gz"
)
inference_download_and_uncompress
(
${
RNN1_INSTALL_DIR
}
${
RNN1_DATA_URL
}
"rnn1
%2Fdata.txt.tar.gz"
)
endif
()
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
ARGS --infer_
ditu_rnn_model=
${
DITU
_INSTALL_DIR
}
/model
--infer_d
itu_rnn_data=
${
DITU
_INSTALL_DIR
}
/data.txt
)
ARGS --infer_
model=
${
RNN1
_INSTALL_DIR
}
/model
--infer_d
ata=
${
RNN1
_INSTALL_DIR
}
/data.txt
)
inference_analysis_test
(
test_data_flow_graph SRCS data_flow_graph_tester.cc
)
inference_analysis_test
(
test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc
)
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
5023530a
...
...
@@ -26,8 +26,8 @@
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
DEFINE_string
(
infer_
ditu_rnn_model
,
""
,
"model path for ditu RNN
"
);
DEFINE_string
(
infer_d
itu_rnn_data
,
""
,
"data path for ditu RNN
"
);
DEFINE_string
(
infer_
model
,
""
,
"model path
"
);
DEFINE_string
(
infer_d
ata
,
""
,
"data path
"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
...
...
@@ -223,17 +223,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
// namespace
const
float
ditu_rnn_target_data
[]
=
{
104.711
,
11.2431
,
1.35422
,
0
,
0
,
0
,
0
,
0
,
27.7039
,
1.41486
,
7.09526
,
0
,
0
,
0
,
0
,
0
,
7.6481
,
6.5324
,
56.383
,
2.88018
,
8.92918
,
132.007
,
4.27429
,
2.02934
,
14.1727
,
10.7461
,
25.0616
,
16.0197
,
14.4163
,
16.9199
,
6.75517
,
0
,
80.0249
,
4.77739
,
0
,
0
,
0
,
0
,
0
,
0
,
47.5643
,
2.67029
,
8.76252
,
0
,
0
,
0
,
0
,
0
,
51.8822
,
4.4411
,
0
,
0
,
0
,
0
,
0
,
0
,
10.7286
,
12.0595
,
10.6672
,
0
,
0
,
0
,
0
,
0
,
93.5771
,
3.84641
,
0
,
0
,
0
,
0
,
0
,
0
,
169.426
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base_outputs
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
...
...
@@ -255,11 +244,10 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
}
}
// Test with a really complicate model.
void
TestDituRNNPrediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
void
TestRNN1Prediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
AnalysisConfig
config
;
config
.
prog_file
=
FLAGS_infer_
ditu_rnn_
model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_
ditu_rnn_
model
+
"/param"
;
config
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_model
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
...
...
@@ -277,7 +265,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_d
itu_rnn_d
ata
,
batch_size
);
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
,
base_outputs
;
...
...
@@ -307,7 +295,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local input_slots and outputs.
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_d
itu_rnn_d
ata
,
batch_size
);
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
...
...
@@ -354,24 +342,22 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
}
// Inference with analysis and IR, easy for profiling independently.
TEST
(
Analyzer
,
DituRNN
)
{
TestDituRNNPrediction
(
true
,
true
,
FLAGS_num_threads
);
}
TEST
(
Analyzer
,
rnn1
)
{
TestRNN1Prediction
(
true
,
true
,
FLAGS_num_threads
);
}
// Other unit-tests of
DituRNN
, test different options of use_analysis,
// Other unit-tests of
RNN1
, test different options of use_analysis,
// activate_ir and multi-threads.
TEST
(
Analyzer
,
Ditu
RNN_tests
)
{
TEST
(
Analyzer
,
RNN_tests
)
{
int
num_threads
[
2
]
=
{
1
,
4
};
for
(
auto
i
:
num_threads
)
{
// Directly infer with the original model.
Test
DituRNN
Prediction
(
false
,
false
,
i
);
Test
RNN1
Prediction
(
false
,
false
,
i
);
// Inference with the original model with the analysis turned on, the
// analysis
// module will transform the program to a data flow graph.
Test
DituRNN
Prediction
(
true
,
false
,
i
);
Test
RNN1
Prediction
(
true
,
false
,
i
);
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
Test
DituRNN
Prediction
(
true
,
true
,
i
);
Test
RNN1
Prediction
(
true
,
true
,
i
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录