Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4fe9ca69
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4fe9ca69
编写于
4月 03, 2020
作者:
Z
zhaoyuchen2018
提交者:
GitHub
4月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
improve elementwise performance. (#23405)
* improve elementwise performance. * Add contiguous check, test=develop
上级
5c607787
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
149 addition
and
6 deletion
+149
-6
paddle/fluid/operators/elementwise/elementwise_op_function.h
paddle/fluid/operators/elementwise/elementwise_op_function.h
+149
-6
未找到文件。
paddle/fluid/operators/elementwise/elementwise_op_function.h
100644 → 100755
浏览文件 @
4fe9ca69
...
...
@@ -548,6 +548,64 @@ static __global__ void FastCommonGradBroadcastAllCUDAKernel(
}
}
template
<
typename
T
,
typename
OP
>
static
__global__
void
FastCommonGradBroadcastOneCUDAKernel
(
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
const
T
*
dout
,
int
pre
,
int
n
,
int
post
,
int
y_pre
,
int
y_n
,
int
y_post
,
bool
is_xsize
,
OP
op
,
T
*
dd
)
{
int
tid
=
threadIdx
.
x
;
int
bid
=
blockIdx
.
x
;
T
val
(
0
);
if
(
is_xsize
)
{
// do reduce for x
for
(
int
i
=
tid
;
i
<
n
;
i
+=
ELEMWISE_MAX_BLOCK_DIM
)
{
int
b_i
=
bid
/
post
;
int
b_j
=
bid
%
post
;
int
x_offset
=
b_i
*
n
*
post
+
b_j
;
int
out_offset
=
b_i
*
n
*
post
+
i
*
post
+
b_j
;
// Get y pre rows id with x post and y_pre.
int
b_yi
=
bid
/
(
post
*
y_pre
);
int
b_yj
=
bid
%
y_post
;
int
y_offset
=
b_yi
*
y_n
+
i
*
y_post
+
b_yj
;
if
(
dd
)
{
val
+=
op
(
x
[
x_offset
],
y
[
y_offset
],
out
[
out_offset
],
dout
[
out_offset
]);
}
}
if
(
dd
)
{
int
h
=
n
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
n
;
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
h
);
if
(
tid
==
0
)
{
dd
[
bid
]
=
val
;
}
}
}
else
{
// do reduce for y
for
(
int
i
=
tid
;
i
<
n
;
i
+=
ELEMWISE_MAX_BLOCK_DIM
)
{
int
b_i
=
bid
/
post
;
int
b_j
=
bid
%
post
;
int
y_offset
=
b_i
*
n
*
post
+
b_j
;
int
out_offset
=
b_i
*
n
*
post
+
i
*
post
+
b_j
;
int
b_yi
=
bid
/
(
post
*
y_pre
);
int
b_yj
=
bid
%
y_post
;
int
x_offset
=
b_yi
*
y_n
+
i
*
y_post
+
b_yj
;
if
(
dd
)
{
val
+=
op
(
x
[
x_offset
],
y
[
y_offset
],
out
[
out_offset
],
dout
[
out_offset
]);
}
}
if
(
dd
)
{
int
h
=
n
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
n
;
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
h
);
if
(
tid
==
0
)
{
dd
[
bid
]
=
val
;
}
}
}
}
// Check input can be split into 2 parts
static
inline
bool
SplitDims
(
const
std
::
vector
<
int
>
&
y_broadcast_pos
,
int
max_dim
)
{
...
...
@@ -568,6 +626,16 @@ static inline bool SplitDims(const std::vector<int> &y_broadcast_pos,
return
can_split_dim2
;
}
// Suppose only has contiguous dims
static
inline
bool
CheckContiguousDims
(
const
std
::
vector
<
int
>
&
broadcast_pos
)
{
for
(
int
i
=
1
;
i
<
broadcast_pos
.
size
();
++
i
)
{
if
(
broadcast_pos
[
i
]
!=
broadcast_pos
[
i
-
1
]
+
1
)
{
return
false
;
}
}
return
true
;
}
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
void
CommonGradBroadcastCUDA
(
const
framework
::
Tensor
&
x
,
const
framework
::
Tensor
&
y
,
...
...
@@ -644,6 +712,7 @@ void CommonGradBroadcastCUDA(
y_broadcast_pos
.
emplace_back
(
i
);
}
}
auto
stream
=
ctx
.
stream
();
bool
can_split_x
=
false
;
bool
can_split_y
=
false
;
...
...
@@ -751,10 +820,22 @@ void CommonGradBroadcastCUDA(
int
axis
=
broadcast_pos
[
0
];
int
pre
=
std
::
accumulate
(
out_dims_array
,
out_dims_array
+
axis
,
1
,
std
::
multiplies
<
int
>
());
int
mid
=
out_dims_array
[
axis
];
int
post
=
std
::
accumulate
(
out_dims_array
+
axis
+
1
,
out_dims_array
+
max_dim
,
1
,
std
::
multiplies
<
int
>
());
int
mid
=
1
;
int
post
=
1
;
if
(
broadcast_pos
.
size
()
==
1
)
{
mid
=
out_dims_array
[
axis
];
post
=
std
::
accumulate
(
out_dims_array
+
axis
+
1
,
out_dims_array
+
max_dim
,
1
,
std
::
multiplies
<
int
>
());
}
else
{
mid
=
std
::
accumulate
(
out_dims_array
+
axis
,
out_dims_array
+
broadcast_pos
.
back
()
+
1
,
1
,
std
::
multiplies
<
int
>
());
post
=
std
::
accumulate
(
out_dims_array
+
broadcast_pos
.
back
()
+
1
,
out_dims_array
+
max_dim
,
1
,
std
::
multiplies
<
int
>
());
}
VLOG
(
3
)
<<
"FastBroadCastAllCUDAF pre:"
<<
pre
<<
" mid:"
<<
mid
<<
" post:"
<<
post
;
...
...
@@ -767,6 +848,55 @@ void CommonGradBroadcastCUDA(
dy_op
,
dx_data
,
dy_data
);
};
auto
FastBroadCastOneCUDAF
=
[
&
](
const
std
::
vector
<
int
>
&
broadcast_pos
,
int
max_dim
,
bool
is_x
)
{
int
axis
=
broadcast_pos
[
0
];
int
pre
=
std
::
accumulate
(
out_dims_array
,
out_dims_array
+
axis
,
1
,
std
::
multiplies
<
int
>
());
int
mid
=
out_dims_array
[
axis
];
int
post
=
std
::
accumulate
(
out_dims_array
+
axis
+
1
,
out_dims_array
+
max_dim
,
1
,
std
::
multiplies
<
int
>
());
int
k_pre
;
int
k_mid
;
int
k_post
;
if
(
is_x
)
{
k_pre
=
std
::
accumulate
(
y_dims_array
,
y_dims_array
+
axis
,
1
,
std
::
multiplies
<
int
>
());
k_mid
=
y_dims_array
[
axis
];
k_post
=
std
::
accumulate
(
y_dims_array
+
axis
+
1
,
y_dims_array
+
max_dim
,
1
,
std
::
multiplies
<
int
>
());
int
block_size
=
std
::
min
(
ELEMWISE_MAX_BLOCK_DIM
,
mid
);
int
grid_size
=
pre
*
post
;
// we need to calc y offset with blockid, so do x_pre/y_pre to get left
// size.
if
(
k_pre
!=
pre
)
k_pre
=
pre
/
k_pre
;
FastCommonGradBroadcastOneCUDAKernel
<<<
grid_size
,
block_size
,
0
,
stream
>>>
(
x_data
,
y_data
,
out_data
,
dout_data
,
pre
,
mid
,
post
,
k_pre
,
k_mid
,
k_post
,
true
,
dx_op
,
dx_data
);
}
else
{
k_pre
=
std
::
accumulate
(
x_dims_array
,
x_dims_array
+
axis
,
1
,
std
::
multiplies
<
int
>
());
k_mid
=
x_dims_array
[
axis
];
k_post
=
std
::
accumulate
(
x_dims_array
+
axis
+
1
,
x_dims_array
+
max_dim
,
1
,
std
::
multiplies
<
int
>
());
int
block_size
=
std
::
min
(
ELEMWISE_MAX_BLOCK_DIM
,
mid
);
int
grid_size
=
pre
*
post
;
if
(
k_pre
!=
pre
)
k_pre
=
pre
/
k_pre
;
FastCommonGradBroadcastOneCUDAKernel
<<<
grid_size
,
block_size
,
0
,
stream
>>>
(
x_data
,
y_data
,
out_data
,
dout_data
,
pre
,
mid
,
post
,
k_pre
,
k_mid
,
k_post
,
false
,
dy_op
,
dy_data
);
}
VLOG
(
3
)
<<
"FastBroadCastOneCUDAF pre:"
<<
pre
<<
" mid:"
<<
mid
<<
" post:"
<<
post
;
};
// do fast elementwise if: 1. only one input need to do broadcast, we can
// fallback
// to old fast path.
...
...
@@ -781,7 +911,9 @@ void CommonGradBroadcastCUDA(
LOG
(
ERROR
)
<<
"Error, broadcast should not into w broadcast"
;
}
return
;
}
else
if
(
y_broadcast_pos
.
size
()
==
1
)
{
// for only one dim broadcast.
}
else
if
(
y_broadcast_pos
.
size
()
==
1
||
CheckContiguousDims
(
y_broadcast_pos
))
{
// for only one dim and
// contiguous broadcast.
// If cannot split, which means input has 3 parts
FastBroadCastAllCUDAF
(
y_broadcast_pos
,
max_dim
,
true
);
return
;
...
...
@@ -797,7 +929,8 @@ void CommonGradBroadcastCUDA(
LOG
(
ERROR
)
<<
"Error, broadcast should not into w broadcast"
;
}
return
;
}
else
if
(
x_broadcast_pos
.
size
()
==
1
)
{
}
else
if
(
x_broadcast_pos
.
size
()
==
1
||
CheckContiguousDims
(
x_broadcast_pos
))
{
FastBroadCastAllCUDAF
(
x_broadcast_pos
,
max_dim
,
false
);
return
;
}
...
...
@@ -812,6 +945,9 @@ void CommonGradBroadcastCUDA(
// finish at end
LOG
(
ERROR
)
<<
"Error, broadcast should not into w broadcast"
;
}
}
else
if
(
y_broadcast_pos
.
size
()
==
1
)
{
FastBroadCastOneCUDAF
(
y_broadcast_pos
,
max_dim
,
false
);
can_split_y
=
true
;
}
can_split_x
=
SplitDims
(
x_broadcast_pos
,
max_dim
);
if
(
can_split_x
)
{
...
...
@@ -820,6 +956,9 @@ void CommonGradBroadcastCUDA(
}
else
{
LOG
(
ERROR
)
<<
"Error, broadcast should not into w broadcast"
;
}
}
else
if
(
x_broadcast_pos
.
size
()
==
1
)
{
FastBroadCastOneCUDAF
(
x_broadcast_pos
,
max_dim
,
true
);
can_split_x
=
true
;
}
VLOG
(
3
)
<<
"CommonBroadcast can_split_y:"
<<
can_split_y
<<
" can_split_x:"
<<
can_split_x
;
...
...
@@ -1492,6 +1631,10 @@ void CommonElementwiseBroadcastBackward(
dx
->
mutable_data
<
T
>
(
x_dims
,
ctx
.
GetPlace
());
}
VLOG
(
3
)
<<
"CommonElementwiseBroadcastBackward xdims:"
<<
framework
::
make_ddim
(
x_dims_array
)
<<
" ydim:"
<<
framework
::
make_ddim
(
y_dims_array
);
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
#ifdef __NVCC__
CommonGradBroadcastCUDA
<
T
,
DX_OP
,
DY_OP
>
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录