Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4f5b5e28
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4f5b5e28
编写于
2月 28, 2018
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
2edeb639
上级
b47e3d9f
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
46 addition
and
42 deletion
+46
-42
develop/doc/_sources/design/parallel_do.md.txt
develop/doc/_sources/design/parallel_do.md.txt
+11
-10
develop/doc/design/parallel_do.html
develop/doc/design/parallel_do.html
+11
-10
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/_sources/design/parallel_do.md.txt
develop/doc_cn/_sources/design/parallel_do.md.txt
+11
-10
develop/doc_cn/design/parallel_do.html
develop/doc_cn/design/parallel_do.html
+11
-10
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/_sources/design/parallel_do.md.txt
浏览文件 @
4f5b5e28
...
@@ -39,15 +39,16 @@ In the backward pass
...
@@ -39,15 +39,16 @@ In the backward pass
This implementation allows to write mixed device program like this
This implementation allows to write mixed device program like this
```python
```python
# get embedding feature on CPU
W1 = fluid.tensor(size=[100,20], parameter=true)
feature = some_cpu_only_op(data
)
W2 = fluid.tensor(size=[20,15], parameter=true
)
gpu_places = get_place(use_gpu=True)
data = layers.data()
gpu_places = layers.get_place(use_gpu=True)
# parallel processing on multiple GPUs
# parallel processing on multiple GPUs
pd = ParallelDo(gpu_places)
pd = ParallelDo(gpu_places)
with pd.do():
with pd.do(input=data):
read_input(feature)
prediction = softmax(fc(fc(data, W1), W2))
prediction = my_net(feature)
write_output(prediction)
write_output(prediction)
prediction = pd()
prediction = pd()
loss = cross_entropy(prediction, label)
loss = cross_entropy(prediction, label)
...
@@ -66,20 +67,20 @@ start_program
...
@@ -66,20 +67,20 @@ start_program
main_program
main_program
{
{
block0 {
block0 {
vars: data, places, w1, w2
vars: data, places, w1, w2
, w1_grad, w2_grad,
ops: data, get_place, parallel_do(block1),
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2),
parallel_do_grad(block2),
sgd(w2, w2_grad),
sgd(w2, w2_grad),
sgd(w1, w1_grad)
sgd(w1, w1_grad)
}
}
block1 {
block1 {
# the forward pass
parent_block: 0
parent_block: 0
vars: data, h1, h2, loss
vars: data, h1, h2, loss
ops: fc, fc, softmax
ops: fc, fc, softmax
}
}
block2 {
block2 {
# the backward pass
parent_block: 1
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard,
w1_grad,
w2_grad
vars: data_grad, h1_grad, h2_grad, loss_gard,
local_w1_grad, local_
w2_grad
ops: softmax_grad,
ops: softmax_grad,
fc_grad
fc_grad
fc_grad
fc_grad
...
...
develop/doc/design/parallel_do.html
浏览文件 @
4f5b5e28
...
@@ -223,15 +223,16 @@
...
@@ -223,15 +223,16 @@
</pre></div>
</pre></div>
</div>
</div>
<p>
This implementation allows to write mixed device program like this
</p>
<p>
This implementation allows to write mixed device program like this
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"
c1"
>
# get embedding feature on CPU
</span>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"
n"
>
W1
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
tensor
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
100
</span><span
class=
"p"
>
,
</span><span
class=
"mi"
>
20
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
parameter
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
true
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
feature
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
some_cpu_only_op
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
W2
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
tensor
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
20
</span><span
class=
"p"
>
,
</span><span
class=
"mi"
>
15
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
parameter
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
true
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
gpu_places
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
get_place
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
use_gpu
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
data
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
gpu_places
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
get_place
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
use_gpu
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# parallel processing on multiple GPUs
</span>
<span
class=
"c1"
>
# parallel processing on multiple GPUs
</span>
<span
class=
"n"
>
pd
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
ParallelDo
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
gpu_places
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
pd
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
ParallelDo
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
gpu_places
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
pd
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
do
</span><span
class=
"p"
>
():
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
pd
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
do
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
read_input
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
feature
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
softmax
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
W1
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
W2
</span><span
class=
"p"
>
))
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
my_net
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
feature
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
write_output
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
write_output
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
pd
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
pd
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
cross_entropy
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
cross_entropy
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label
</span><span
class=
"p"
>
)
</span>
...
@@ -248,20 +249,20 @@
...
@@ -248,20 +249,20 @@
<span
class=
"n"
>
main_program
</span>
<span
class=
"n"
>
main_program
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block0
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block0
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
places
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
places
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2
</span>
<span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
get_place
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parallel_do
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block1
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
get_place
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parallel_do
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block1
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
parallel_do_grad
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block2
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
parallel_do_grad
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block2
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
)
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"n"
>
block1
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block1
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"c1"
>
# the forward pass
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
0
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
0
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
softmax
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
softmax
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"n"
>
block2
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block2
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"c1"
>
# the backward pass
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
1
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
1
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss_gard
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss_gard
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
local_w1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
local_
w2_grad
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
softmax_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
softmax_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
fc_grad
</span>
<span
class=
"n"
>
fc_grad
</span>
<span
class=
"n"
>
fc_grad
</span>
<span
class=
"n"
>
fc_grad
</span>
...
...
develop/doc/searchindex.js
浏览文件 @
4f5b5e28
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/_sources/design/parallel_do.md.txt
浏览文件 @
4f5b5e28
...
@@ -39,15 +39,16 @@ In the backward pass
...
@@ -39,15 +39,16 @@ In the backward pass
This implementation allows to write mixed device program like this
This implementation allows to write mixed device program like this
```python
```python
# get embedding feature on CPU
W1 = fluid.tensor(size=[100,20], parameter=true)
feature = some_cpu_only_op(data
)
W2 = fluid.tensor(size=[20,15], parameter=true
)
gpu_places = get_place(use_gpu=True)
data = layers.data()
gpu_places = layers.get_place(use_gpu=True)
# parallel processing on multiple GPUs
# parallel processing on multiple GPUs
pd = ParallelDo(gpu_places)
pd = ParallelDo(gpu_places)
with pd.do():
with pd.do(input=data):
read_input(feature)
prediction = softmax(fc(fc(data, W1), W2))
prediction = my_net(feature)
write_output(prediction)
write_output(prediction)
prediction = pd()
prediction = pd()
loss = cross_entropy(prediction, label)
loss = cross_entropy(prediction, label)
...
@@ -66,20 +67,20 @@ start_program
...
@@ -66,20 +67,20 @@ start_program
main_program
main_program
{
{
block0 {
block0 {
vars: data, places, w1, w2
vars: data, places, w1, w2
, w1_grad, w2_grad,
ops: data, get_place, parallel_do(block1),
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2),
parallel_do_grad(block2),
sgd(w2, w2_grad),
sgd(w2, w2_grad),
sgd(w1, w1_grad)
sgd(w1, w1_grad)
}
}
block1 {
block1 {
# the forward pass
parent_block: 0
parent_block: 0
vars: data, h1, h2, loss
vars: data, h1, h2, loss
ops: fc, fc, softmax
ops: fc, fc, softmax
}
}
block2 {
block2 {
# the backward pass
parent_block: 1
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard,
w1_grad,
w2_grad
vars: data_grad, h1_grad, h2_grad, loss_gard,
local_w1_grad, local_
w2_grad
ops: softmax_grad,
ops: softmax_grad,
fc_grad
fc_grad
fc_grad
fc_grad
...
...
develop/doc_cn/design/parallel_do.html
浏览文件 @
4f5b5e28
...
@@ -230,15 +230,16 @@
...
@@ -230,15 +230,16 @@
</pre></div>
</pre></div>
</div>
</div>
<p>
This implementation allows to write mixed device program like this
</p>
<p>
This implementation allows to write mixed device program like this
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"
c1"
>
# get embedding feature on CPU
</span>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"
n"
>
W1
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
tensor
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
100
</span><span
class=
"p"
>
,
</span><span
class=
"mi"
>
20
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
parameter
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
true
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
feature
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
some_cpu_only_op
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
W2
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
tensor
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
20
</span><span
class=
"p"
>
,
</span><span
class=
"mi"
>
15
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
parameter
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
true
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
gpu_places
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
get_place
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
use_gpu
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
data
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
gpu_places
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
get_place
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
use_gpu
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# parallel processing on multiple GPUs
</span>
<span
class=
"c1"
>
# parallel processing on multiple GPUs
</span>
<span
class=
"n"
>
pd
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
ParallelDo
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
gpu_places
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
pd
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
ParallelDo
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
gpu_places
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
pd
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
do
</span><span
class=
"p"
>
():
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
pd
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
do
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
read_input
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
feature
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
softmax
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
W1
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
W2
</span><span
class=
"p"
>
))
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
my_net
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
feature
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
write_output
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
write_output
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
pd
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
pd
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
cross_entropy
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
cross_entropy
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
prediction
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label
</span><span
class=
"p"
>
)
</span>
...
@@ -255,20 +256,20 @@
...
@@ -255,20 +256,20 @@
<span
class=
"n"
>
main_program
</span>
<span
class=
"n"
>
main_program
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block0
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block0
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
places
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
places
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2
</span>
<span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
get_place
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parallel_do
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block1
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
get_place
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parallel_do
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block1
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
parallel_do_grad
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block2
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
parallel_do_grad
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
block2
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
sgd
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
w1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
)
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"n"
>
block1
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block1
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"c1"
>
# the forward pass
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
0
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
0
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
softmax
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
fc
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
softmax
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"n"
>
block2
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
block2
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"c1"
>
# the backward pass
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
1
</span>
<span
class=
"n"
>
parent_block
</span><span
class=
"p"
>
:
</span>
<span
class=
"mi"
>
1
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss_gard
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
w2_grad
</span>
<span
class=
"nb"
>
vars
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
data_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
h2_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss_gard
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
local_w1_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
local_
w2_grad
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
softmax_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
ops
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
softmax_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
fc_grad
</span>
<span
class=
"n"
>
fc_grad
</span>
<span
class=
"n"
>
fc_grad
</span>
<span
class=
"n"
>
fc_grad
</span>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
4f5b5e28
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录