Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4ea1d041
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4ea1d041
编写于
5月 25, 2023
作者:
T
thunder95
提交者:
GitHub
5月 25, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【Hackathon 4th No.26】为 Paddle 新增 paddle.sparse.nn.Softmax 稀疏 API 的 coo 格式计算逻辑 (#53613)
上级
3143d8bf
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
1084 addition
and
5 deletion
+1084
-5
paddle/phi/api/yaml/sparse_backward.yaml
paddle/phi/api/yaml/sparse_backward.yaml
+2
-1
paddle/phi/api/yaml/sparse_ops.yaml
paddle/phi/api/yaml/sparse_ops.yaml
+2
-1
paddle/phi/kernels/funcs/sparse/softmax.cu.h
paddle/phi/kernels/funcs/sparse/softmax.cu.h
+194
-0
paddle/phi/kernels/funcs/sparse/softmax.h
paddle/phi/kernels/funcs/sparse/softmax.h
+88
-0
paddle/phi/kernels/sparse/cpu/softmax_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/softmax_grad_kernel.cc
+127
-0
paddle/phi/kernels/sparse/cpu/softmax_kernel.cc
paddle/phi/kernels/sparse/cpu/softmax_kernel.cc
+96
-0
paddle/phi/kernels/sparse/gpu/softmax_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/softmax_grad_kernel.cu
+201
-0
paddle/phi/kernels/sparse/gpu/softmax_kernel.cu
paddle/phi/kernels/sparse/gpu/softmax_kernel.cu
+148
-1
paddle/phi/kernels/sparse/softmax_grad_kernel.h
paddle/phi/kernels/sparse/softmax_grad_kernel.h
+8
-0
paddle/phi/kernels/sparse/softmax_kernel.h
paddle/phi/kernels/sparse/softmax_kernel.h
+7
-0
python/paddle/fluid/tests/unittests/test_sparse_softmax_op.py
...on/paddle/fluid/tests/unittests/test_sparse_softmax_op.py
+167
-0
python/paddle/sparse/nn/functional/activation.py
python/paddle/sparse/nn/functional/activation.py
+28
-2
python/paddle/sparse/nn/layer/activation.py
python/paddle/sparse/nn/layer/activation.py
+16
-0
未找到文件。
paddle/phi/api/yaml/sparse_backward.yaml
浏览文件 @
4ea1d041
...
...
@@ -322,7 +322,8 @@
func
:
UnchangedInferMeta
param
:
[
out
]
kernel
:
func
:
softmax_csr_grad{sparse_csr, sparse_csr -> sparse_csr}
func
:
softmax_coo_grad{sparse_coo, sparse_coo -> sparse_coo},
softmax_csr_grad{sparse_csr, sparse_csr -> sparse_csr}
-
backward_op
:
sparse_coo_tensor_grad
forward
:
sparse_coo_tensor(Tensor values, Tensor indices, int64_t[] shape) -> Tensor(out)
...
...
paddle/phi/api/yaml/sparse_ops.yaml
浏览文件 @
4ea1d041
...
...
@@ -286,7 +286,8 @@
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
softmax_csr{sparse_csr -> sparse_csr}
func
:
softmax_coo{sparse_coo -> sparse_coo},
softmax_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
softmax_grad
...
...
paddle/phi/kernels/funcs/sparse/softmax.cu.h
0 → 100644
浏览文件 @
4ea1d041
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
phi
{
namespace
funcs
{
namespace
sparse
{
/* Given the indices of a sparse tensor, return a vector of offsets
for the entries in the equivalent dense tensor. */
template
<
typename
IntT
,
typename
Context
>
inline
DenseTensor
GetOffsets
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
indices
,
const
std
::
vector
<
IntT
>&
sizes
,
const
IntT
dim
)
{
#ifdef __HIPCC__
const
auto
&
policy
=
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
());
#else
const
auto
&
policy
=
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
());
#endif
auto
ndim
=
indices
.
dims
()[
0
];
auto
nnz
=
indices
.
dims
()[
1
];
std
::
vector
<
IntT
>
host_strides
(
ndim
,
1
);
if
(
ndim
>
1
)
{
for
(
IntT
i
=
ndim
-
2
;
i
>=
0
;
i
--
)
{
host_strides
[
i
]
=
host_strides
[
i
+
1
]
*
(
i
+
1
==
dim
?
1
:
sizes
[
i
+
1
]);
}
}
const
IntArray
strides_shape
(
phi
::
vectorize
<
IntT
>
(
indices
.
dims
()));
DenseTensor
strides
=
phi
::
Empty
<
IntT
>
(
dev_ctx
,
strides_shape
);
auto
strides_ptr
=
strides
.
data
<
IntT
>
();
memory_utils
::
Copy
(
dev_ctx
.
GetPlace
(),
strides_ptr
,
phi
::
CPUPlace
(),
host_strides
.
data
(),
sizeof
(
IntT
)
*
host_strides
.
size
(),
dev_ctx
.
stream
());
DenseTensor
offsets
=
phi
::
Empty
<
IntT
>
(
dev_ctx
,
{
nnz
});
auto
indices_ptr
=
indices
.
data
<
IntT
>
();
thrust
::
transform
(
policy
,
thrust
::
make_counting_iterator
(
IntT
(
0
)),
thrust
::
make_counting_iterator
(
IntT
(
nnz
)),
thrust
::
device_ptr
<
IntT
>
(
offsets
.
data
<
IntT
>
()),
[
strides_ptr
,
indices_ptr
,
nnz
,
dim
,
ndim
]
__device__
(
IntT
x
)
{
IntT
pool_index
=
0
;
for
(
IntT
j
=
0
;
j
<
ndim
;
j
++
)
{
if
(
j
!=
dim
)
{
auto
indice_cur_ptr
=
indices_ptr
+
j
*
nnz
+
x
;
auto
stride
=
strides_ptr
[
j
];
pool_index
+=
stride
*
(
*
indice_cur_ptr
);
}
}
return
pool_index
;
});
return
offsets
;
}
/* Return pools of indices that align with the given dimension and the
corresponding max values for each pool. */
template
<
typename
T
,
typename
IntT
,
typename
Context
,
bool
requireMxRows
=
true
>
std
::
tuple
<
DenseTensor
,
DenseTensor
,
DenseTensor
,
DenseTensor
>
ComputePoolMax
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
indices
,
const
DenseTensor
&
values
,
const
std
::
vector
<
IntT
>&
sizes
,
IntT
nvalues
,
const
IntT
dim
)
{
#ifdef __HIPCC__
const
auto
&
policy
=
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
());
#else
const
auto
&
policy
=
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
());
#endif
using
thrust_ptr
=
thrust
::
device_ptr
<
IntT
>
;
auto
nnz
=
indices
.
dims
()[
1
];
DenseTensor
offsets
=
phi
::
funcs
::
sparse
::
GetOffsets
<
IntT
,
Context
>
(
dev_ctx
,
indices
,
sizes
,
dim
);
auto
offsets_ptr
=
offsets
.
data
<
IntT
>
();
phi
::
DenseTensor
sorted_indices
=
phi
::
Empty
<
IntT
>
(
dev_ctx
,
{
nnz
});
thrust_ptr
sorted_indices_thrust_ptr
(
sorted_indices
.
data
<
IntT
>
());
thrust
::
sequence
(
policy
,
sorted_indices_thrust_ptr
,
sorted_indices_thrust_ptr
+
nnz
,
0
);
/* sort indices corresponding to offsets */
thrust
::
sort
(
policy
,
sorted_indices_thrust_ptr
,
sorted_indices_thrust_ptr
+
nnz
,
[
offsets_ptr
]
__device__
(
IntT
x
,
IntT
y
)
{
return
offsets_ptr
[
x
]
<
offsets_ptr
[
y
];
});
DenseTensor
pool_sizes
=
phi
::
Empty
<
IntT
>
(
dev_ctx
,
{
nnz
});
/* reduce the elements which are groupped by pool index,
returns all the pool indexes with unique offset value for each. */
auto
new_end
=
thrust
::
reduce_by_key
(
policy
,
sorted_indices_thrust_ptr
,
sorted_indices_thrust_ptr
+
nnz
,
thrust
::
make_constant_iterator
(
IntT
(
1
)),
thrust
::
make_discard_iterator
(),
thrust_ptr
(
pool_sizes
.
data
<
IntT
>
()),
[
offsets_ptr
]
__device__
(
IntT
x
,
IntT
y
)
{
return
offsets_ptr
[
x
]
==
offsets_ptr
[
y
];
});
auto
new_sz
=
thrust
::
distance
(
thrust_ptr
(
pool_sizes
.
data
<
IntT
>
()),
new_end
.
second
);
pool_sizes
.
Resize
(
phi
::
make_ddim
({
new_sz
}));
DenseTensor
pool_offsets
;
pool_offsets
.
Resize
(
phi
::
make_ddim
({
new_sz
}));
dev_ctx
.
template
Alloc
<
T
>(
&
pool_offsets
);
phi
::
Copy
(
dev_ctx
,
pool_sizes
,
dev_ctx
.
GetPlace
(),
false
,
&
pool_offsets
);
/* accumulate value for each pool index */
thrust_ptr
pool_offsets_thrust_ptr
(
pool_offsets
.
data
<
IntT
>
());
thrust
::
exclusive_scan
(
policy
,
pool_offsets_thrust_ptr
,
pool_offsets_thrust_ptr
+
new_sz
,
pool_offsets_thrust_ptr
);
DenseTensor
mx_buffer
;
if
(
requireMxRows
)
{
mx_buffer
=
phi
::
Full
<
T
>
(
dev_ctx
,
{
new_sz
*
nvalues
},
-
std
::
numeric_limits
<
T
>::
infinity
());
auto
mx_buffer_ptr
=
mx_buffer
.
data
<
T
>
();
auto
pool_sizes_ptr
=
pool_sizes
.
data
<
IntT
>
();
auto
sorted_indices_ptr
=
sorted_indices
.
data
<
IntT
>
();
auto
pool_offsets_ptr
=
pool_offsets
.
data
<
IntT
>
();
auto
values_ptr
=
values
.
data
<
T
>
();
/* calculate max value in each pool. */
thrust
::
for_each
(
policy
,
thrust
::
make_counting_iterator
(
IntT
(
0
)),
thrust
::
make_counting_iterator
(
IntT
(
new_sz
)),
[
sorted_indices_ptr
,
pool_sizes_ptr
,
pool_offsets_ptr
,
mx_buffer_ptr
,
values_ptr
,
nvalues
]
__device__
(
IntT
index
)
{
IntT
curr_pool_size
=
pool_sizes_ptr
[
index
];
auto
mx_row
=
mx_buffer_ptr
+
index
*
nvalues
;
IntT
offset
=
pool_offsets_ptr
[
index
];
for
(
IntT
p
=
0
;
p
<
curr_pool_size
;
p
++
)
{
IntT
i
=
*
(
sorted_indices_ptr
+
offset
+
p
);
for
(
IntT
j
=
0
;
j
<
nvalues
;
j
++
)
{
auto
value_tmp
=
*
(
values_ptr
);
mx_row
[
j
]
=
std
::
max
(
mx_row
[
j
],
value_tmp
);
}
}
});
}
return
std
::
make_tuple
(
sorted_indices
,
pool_offsets
,
pool_sizes
,
mx_buffer
);
}
inline
int
GetNumThreads
(
int
nElem
)
{
#if defined(PADLDE_WITH_ROCM)
int
threadSizes
[
5
]
=
{
16
,
32
,
64
,
128
,
256
};
#else
int
threadSizes
[
5
]
=
{
32
,
64
,
128
,
256
,
512
};
#endif
for
(
int
i
=
0
;
i
!=
5
;
++
i
)
{
if
(
nElem
<=
threadSizes
[
i
])
{
return
threadSizes
[
i
];
}
}
return
threadSizes
[
4
];
}
}
// namespace sparse
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/funcs/sparse/softmax.h
0 → 100644
浏览文件 @
4ea1d041
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/tensor_utils.h"
namespace
phi
{
namespace
funcs
{
namespace
sparse
{
template
<
typename
IntT
>
inline
void
GetPoolsSoftmax
(
const
DenseTensor
&
indices
,
const
std
::
vector
<
IntT
>&
sizes
,
const
int
dim
,
std
::
map
<
IntT
,
std
::
vector
<
IntT
>>*
pools
)
{
auto
ndim
=
indices
.
dims
()[
0
];
auto
nnz
=
indices
.
dims
()[
1
];
std
::
vector
<
IntT
>
strides
(
ndim
,
1
);
if
(
ndim
>
1
)
{
for
(
IntT
i
=
ndim
-
2
;
i
>=
0
;
i
--
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
(
i
+
1
==
dim
?
1
:
sizes
[
i
+
1
]);
}
}
auto
*
indices_data
=
indices
.
data
<
IntT
>
();
for
(
IntT
i
=
0
;
i
<
nnz
;
i
++
)
{
IntT
pool_index
=
0
;
for
(
IntT
j
=
0
;
j
<
ndim
;
j
++
)
{
if
(
j
==
dim
)
continue
;
pool_index
+=
strides
[
j
]
*
indices_data
[
j
*
nnz
+
i
];
}
if
(
pools
->
find
(
pool_index
)
==
pools
->
end
())
{
std
::
vector
<
IntT
>
vec
;
(
*
pools
)[
pool_index
]
=
vec
;
}
(
*
pools
)[
pool_index
].
push_back
(
i
);
}
}
template
<
typename
IntT
>
inline
std
::
vector
<
IntT
>
GetOffsets
(
const
DenseTensor
&
indices
,
const
std
::
vector
<
IntT
>&
sizes
,
const
int
dim
)
{
auto
ndim
=
indices
.
dims
()[
0
];
auto
nnz
=
indices
.
dims
()[
1
];
std
::
vector
<
IntT
>
offsets
(
nnz
);
std
::
vector
<
IntT
>
strides
(
ndim
,
1
);
auto
indices_ptr
=
indices
.
data
<
IntT
>
();
if
(
ndim
>
1
)
{
for
(
IntT
i
=
ndim
-
2
;
i
>=
0
;
i
--
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
sizes
[
i
+
1
];
}
}
for
(
int
i
=
0
;
i
<
nnz
;
i
++
)
{
IntT
acc
=
0
;
for
(
int
j
=
0
;
j
<
ndim
;
j
++
)
{
auto
indices_cur
=
indices_ptr
+
j
*
nnz
+
i
;
auto
stride
=
strides
[
j
];
if
(
j
!=
dim
)
{
acc
+=
stride
*
(
*
indices_cur
);
}
}
offsets
[
i
]
=
acc
;
}
return
offsets
;
}
}
// namespace sparse
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/sparse/cpu/softmax_grad_kernel.cc
浏览文件 @
4ea1d041
...
...
@@ -16,9 +16,14 @@ limitations under the License. */
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
#include "paddle/phi/common/memory_utils.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
#include "paddle/phi/kernels/funcs/sparse/softmax.h"
#include "paddle/phi/kernels/softmax_grad_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace
phi
{
...
...
@@ -85,6 +90,119 @@ void SoftmaxCsrGradKernel(const Context& dev_ctx,
}));
}
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SoftmaxCooGradCPUKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
dout
,
int
axis
,
SparseCooTensor
*
dx
)
{
auto
out_indices
=
out
.
indices
();
auto
out_values
=
out
.
values
();
const
auto
out_dims
=
out
.
dims
();
auto
sparse_dim
=
out
.
sparse_dim
();
auto
sizes
=
phi
::
vectorize
<
IntT
>
(
out_dims
);
auto
grad_indices
=
dout
.
indices
();
auto
grad_values
=
dout
.
values
();
auto
grad_nnz
=
dout
.
nnz
();
*
(
dx
->
mutable_indices
())
=
out_indices
;
DenseTensor
*
values
=
dx
->
mutable_values
();
values
->
Resize
(
out_dims
);
values
->
set_meta
(
out_values
.
meta
());
dev_ctx
.
template
Alloc
<
T
>(
values
);
auto
out_offsets
=
phi
::
funcs
::
sparse
::
GetOffsets
(
out_indices
,
sizes
,
-
1
);
auto
grad_offsets
=
phi
::
funcs
::
sparse
::
GetOffsets
(
grad_indices
,
sizes
,
-
1
);
int
dim
=
axis
<
0
?
out_dims
.
size
()
+
axis
:
axis
;
if
(
dim
>=
sparse_dim
)
{
bool
is_same_offset
=
out_offsets
==
grad_offsets
;
PADDLE_ENFORCE_EQ
(
is_same_offset
,
true
,
phi
::
errors
::
Unimplemented
(
"SparseCooTensor only support same offsets for softmax."
));
SoftmaxGradKernel
<
T
,
Context
>
(
dev_ctx
,
out_values
,
grad_values
,
dim
-
sparse_dim
+
1
,
values
);
return
;
}
auto
nnz
=
out
.
nnz
();
IntT
nvalues
=
std
::
accumulate
(
sizes
.
begin
()
+
sparse_dim
,
sizes
.
end
(),
static_cast
<
IntT
>
(
1
),
std
::
multiplies
<>
());
DenseTensor
values_2
(
*
values
);
values_2
.
Resize
(
phi
::
make_ddim
({
nnz
,
nvalues
}));
DenseTensor
out_values_2
(
out_values
);
out_values_2
.
Resize
(
phi
::
make_ddim
({
nnz
,
nvalues
}));
DenseTensor
grad_values_2
(
grad_values
);
grad_values_2
.
Resize
(
phi
::
make_ddim
({
nnz
,
nvalues
}));
std
::
map
<
IntT
,
std
::
vector
<
IntT
>>
pools
;
phi
::
funcs
::
sparse
::
GetPoolsSoftmax
(
out_indices
,
sizes
,
dim
,
&
pools
);
for
(
size_t
p
=
0
;
p
<
pools
.
size
();
p
++
)
{
auto
pool_indices
=
pools
[
p
];
if
(
pool_indices
.
empty
())
continue
;
std
::
vector
<
T
>
tmp_row
(
nvalues
,
0
);
/* Compute tmp = - sum_j output_j * grad_j */
for
(
IntT
i
:
pool_indices
)
{
auto
out_values_row
=
out_values_2
.
data
<
T
>
()
+
i
*
nvalues
;
auto
low
=
std
::
lower_bound
(
grad_offsets
.
begin
(),
grad_offsets
.
end
(),
out_offsets
[
i
]);
auto
j
=
low
-
grad_offsets
.
begin
();
if
(
j
<
grad_nnz
&&
(
out_offsets
[
i
]
==
grad_offsets
[
j
]))
{
auto
grad_values_row
=
grad_values_2
.
data
<
T
>
()
+
j
*
nvalues
;
for
(
IntT
k
=
0
;
k
<
nvalues
;
k
++
)
{
tmp_row
[
k
]
-=
(
*
(
out_values_row
+
k
))
*
(
*
(
grad_values_row
+
k
));
}
}
}
/* Compute grad_input = output * (grad + tmp)*/
for
(
IntT
i
:
pool_indices
)
{
auto
out_values_row
=
out_values_2
.
data
<
T
>
()
+
i
*
nvalues
;
auto
values_row
=
values_2
.
data
<
T
>
()
+
i
*
nvalues
;
auto
low
=
std
::
lower_bound
(
grad_offsets
.
begin
(),
grad_offsets
.
end
(),
out_offsets
[
i
]);
auto
j
=
low
-
grad_offsets
.
begin
();
if
(
j
<
grad_nnz
&&
(
out_offsets
[
i
]
==
grad_offsets
[
j
]))
{
auto
grad_values_row
=
grad_values_2
.
data
<
T
>
()
+
j
*
nvalues
;
for
(
IntT
k
=
0
;
k
<
nvalues
;
k
++
)
{
*
(
values_row
+
k
)
=
(
*
(
out_values_row
+
k
))
*
((
*
(
grad_values_row
+
k
))
+
tmp_row
[
k
]);
}
}
else
{
for
(
IntT
k
=
0
;
k
<
nvalues
;
k
++
)
{
*
(
values_row
+
k
)
=
(
*
out_values_row
+
k
)
*
(
tmp_row
[
k
]);
}
}
}
}
}
template
<
typename
T
,
typename
Context
>
void
SoftmaxCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
dout
,
int
axis
,
SparseCooTensor
*
dx
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
out
.
indices
().
dtype
(),
"SoftmaxCooGradCPUKernel"
,
([
&
]
{
SoftmaxCooGradCPUKernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
out
,
dout
,
axis
,
dx
);
}));
}
}
// namespace sparse
}
// namespace phi
...
...
@@ -96,3 +214,12 @@ PD_REGISTER_KERNEL(softmax_csr_grad,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
PD_REGISTER_KERNEL
(
softmax_coo_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCooGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/cpu/softmax_kernel.cc
浏览文件 @
4ea1d041
...
...
@@ -18,7 +18,10 @@ limitations under the License. */
#include "paddle/phi/backends/cpu/cpu_info.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
#include "paddle/phi/kernels/funcs/sparse/softmax.h"
#include "paddle/phi/kernels/softmax_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace
phi
{
...
...
@@ -85,6 +88,90 @@ void SoftmaxCsrKernel(const Context& dev_ctx,
}));
}
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SoftmaxCooCPUKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
int
axis
,
SparseCooTensor
*
out
)
{
auto
indices
=
x
.
indices
();
auto
values
=
x
.
values
();
const
auto
x_dims
=
x
.
dims
();
const
auto
sparse_dim
=
x
.
sparse_dim
();
DenseTensor
out_indices
(
indices
);
DenseTensor
out_values
=
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
values
);
out
->
SetMember
(
out_indices
,
out_values
,
x
.
dims
(),
x
.
coalesced
());
int
dim
=
axis
<
0
?
x_dims
.
size
()
+
axis
:
axis
;
/* If dim is greater than or equal to sparse_dim, the dense softmax is used.
*/
if
(
dim
>=
sparse_dim
)
{
SoftmaxKernel
<
T
,
Context
>
(
dev_ctx
,
values
,
dim
-
sparse_dim
+
1
,
&
out_values
);
return
;
}
const
std
::
vector
<
IntT
>
sizes
=
phi
::
vectorize
<
IntT
>
(
x_dims
);
std
::
map
<
IntT
,
std
::
vector
<
IntT
>>
pools
;
IntT
nvalues
=
std
::
accumulate
(
sizes
.
begin
()
+
sparse_dim
,
sizes
.
end
(),
static_cast
<
IntT
>
(
1
),
std
::
multiplies
<>
());
phi
::
funcs
::
sparse
::
GetPoolsSoftmax
(
out_indices
,
sizes
,
dim
,
&
pools
);
auto
values_ptr
=
values
.
data
<
T
>
();
auto
out_values_ptr
=
out_values
.
data
<
T
>
();
for
(
size_t
p
=
0
;
p
<
pools
.
size
();
p
++
)
{
auto
pool_indices
=
pools
[
p
];
if
(
pool_indices
.
empty
())
{
continue
;
}
std
::
vector
<
T
>
mx_row
(
nvalues
,
-
std
::
numeric_limits
<
T
>::
infinity
());
std
::
vector
<
T
>
exp_sums_row
(
nvalues
,
0
);
IntT
pool_size
=
static_cast
<
IntT
>
(
pool_indices
.
size
());
// Compute max for each pool
for
(
IntT
i
=
0
;
i
<
pool_size
;
i
++
)
{
auto
values_row
=
values_ptr
+
pool_indices
[
i
]
*
nvalues
;
for
(
IntT
j
=
0
;
j
<
nvalues
;
j
++
)
{
mx_row
[
j
]
=
std
::
max
(
mx_row
[
j
],
*
(
values_row
+
j
));
}
}
// exp to (v - mx) and sum the results
for
(
IntT
i
=
0
;
i
<
pool_size
;
i
++
)
{
auto
values_row
=
values_ptr
+
pool_indices
[
i
]
*
nvalues
;
auto
out_values_row
=
out_values_ptr
+
pool_indices
[
i
]
*
nvalues
;
for
(
IntT
j
=
0
;
j
<
nvalues
;
j
++
)
{
auto
v
=
std
::
exp
(
*
(
values_row
+
j
)
-
mx_row
[
j
]);
out_values_row
[
j
]
=
v
;
exp_sums_row
[
j
]
+=
v
;
}
}
/* Normalize with the sum of exponents */
for
(
IntT
i
=
0
;
i
<
pool_size
;
i
++
)
{
auto
out_values_row
=
out_values_ptr
+
pool_indices
[
i
]
*
nvalues
;
for
(
IntT
j
=
0
;
j
<
nvalues
;
j
++
)
{
out_values_row
[
j
]
*=
1.0
/
exp_sums_row
[
j
];
}
}
}
}
// cpu kerenel
template
<
typename
T
,
typename
Context
>
void
SoftmaxCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
int
axis
,
SparseCooTensor
*
out
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
x
.
indices
().
dtype
(),
"SoftmaxCooCPUKernel"
,
([
&
]
{
SoftmaxCooCPUKernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
x
,
axis
,
out
);
}));
}
}
// namespace sparse
}
// namespace phi
...
...
@@ -96,3 +183,12 @@ PD_REGISTER_KERNEL(softmax_csr,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
PD_REGISTER_KERNEL
(
softmax_coo
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCooKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/gpu/softmax_grad_kernel.cu
浏览文件 @
4ea1d041
...
...
@@ -14,10 +14,24 @@ limitations under the License. */
#include "paddle/phi/kernels/sparse/softmax_grad_kernel.h"
#include <thrust/binary_search.h>
#include <thrust/device_ptr.h>
#include <thrust/equal.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/discard_iterator.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>
#include <thrust/transform.h>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/sparse/softmax.cu.h"
#include "paddle/phi/kernels/softmax_grad_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace
phi
{
...
...
@@ -104,6 +118,184 @@ void SoftmaxCsrGradKernel(const Context& dev_ctx,
}));
}
template
<
typename
T
,
typename
IntT
>
__global__
void
SoftmaxCooGradGPURawKernel
(
IntT
*
sorted_pool_indices
,
IntT
size
,
IntT
*
pool_sizes
,
IntT
*
pool_offsets
,
IntT
nvalues
,
IntT
grad_nnz
,
IntT
*
grad_offsets
,
IntT
*
out_offsets
,
IntT
*
lower_bound_values
,
T
*
values
,
T
*
out_values
,
T
*
grad_values
,
int
total_rows
)
{
int
row
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
if
(
row
>=
total_rows
)
return
;
int
tid
=
threadIdx
.
x
;
int
index
=
row
/
nvalues
;
int
nval
=
row
%
nvalues
;
IntT
offset
=
pool_offsets
[
index
];
IntT
*
pool_indices
=
sorted_pool_indices
+
offset
;
IntT
pool_indices_size
=
pool_sizes
[
index
];
int
kIteration
=
(
pool_indices_size
+
warpSize
-
1
)
/
warpSize
;
T
mul_result
=
0
;
for
(
int
k
=
0
;
k
<
kIteration
;
++
k
)
{
int
idx
=
tid
+
k
*
warpSize
;
if
(
idx
>=
pool_indices_size
)
break
;
auto
i
=
pool_indices
[
idx
];
auto
cur_out_value
=
out_values
+
i
*
nvalues
;
auto
j
=
lower_bound_values
[
i
];
if
(
j
<
grad_nnz
&&
(
out_offsets
[
i
]
==
grad_offsets
[
j
]))
{
auto
cur_grad_value
=
grad_values
+
j
*
nvalues
;
mul_result
+=
(
*
(
cur_out_value
+
nval
))
*
(
*
(
cur_grad_value
+
nval
));
}
}
T
sum
=
phi
::
funcs
::
WarpReduceSum
<
T
>
(
mul_result
,
0xFFFFFFFF
);
for
(
int
k
=
0
;
k
<
kIteration
;
++
k
)
{
int
idx
=
tid
+
k
*
warpSize
;
if
(
idx
>=
pool_indices_size
)
break
;
auto
i
=
pool_indices
[
idx
];
auto
j
=
lower_bound_values
[
i
];
auto
cur_out_value
=
out_values
+
i
*
nvalues
;
auto
cur_value
=
values
+
i
*
nvalues
;
auto
cur_grad_value
=
grad_values
+
j
*
nvalues
;
if
(
j
<
grad_nnz
&&
(
out_offsets
[
i
]
==
grad_offsets
[
j
]))
{
cur_value
[
nval
]
=
(
*
(
cur_out_value
+
nval
))
*
(
*
(
cur_grad_value
+
nval
)
-
sum
);
}
else
{
cur_value
[
nval
]
=
-
(
*
(
cur_out_value
+
nval
))
*
sum
;
}
}
}
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SoftmaxCooGradGPUKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
dout
,
int
axis
,
SparseCooTensor
*
dx
)
{
using
thrust_ptr
=
thrust
::
device_ptr
<
IntT
>
;
auto
out_indices
=
out
.
indices
();
auto
out_values
=
out
.
values
();
auto
out_values_ptr
=
out_values
.
data
<
T
>
();
const
auto
output_indices_dims
=
out
.
indices
().
dims
();
const
auto
out_dims
=
out
.
dims
();
auto
sparse_dim
=
out
.
sparse_dim
();
auto
sizes
=
phi
::
vectorize
<
IntT
>
(
out_dims
);
auto
grad_indices
=
dout
.
indices
();
auto
grad_values
=
dout
.
values
();
auto
grad_values_ptr
=
grad_values
.
data
<
T
>
();
auto
out_nnz
=
out
.
nnz
();
auto
grad_nnz
=
dout
.
nnz
();
auto
place
=
dev_ctx
.
GetPlace
();
auto
stream
=
dev_ctx
.
stream
();
*
(
dx
->
mutable_indices
())
=
out_indices
;
DenseTensor
*
values
=
dx
->
mutable_values
();
values
->
Resize
(
out_dims
);
values
->
set_meta
(
out_values
.
meta
());
dev_ctx
.
template
Alloc
<
T
>(
values
);
phi
::
funcs
::
SetConstant
<
GPUContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
values
,
static_cast
<
T
>
(
0.0
f
));
DenseTensor
out_offsets
=
phi
::
funcs
::
sparse
::
GetOffsets
<
IntT
,
Context
>
(
dev_ctx
,
out_indices
,
sizes
,
static_cast
<
IntT
>
(
-
1
));
auto
out_offsets_ptr
=
out_offsets
.
data
<
IntT
>
();
DenseTensor
grad_offsets
=
phi
::
funcs
::
sparse
::
GetOffsets
<
IntT
,
Context
>
(
dev_ctx
,
grad_indices
,
sizes
,
static_cast
<
IntT
>
(
-
1
));
auto
grad_offsets_ptr
=
grad_offsets
.
data
<
IntT
>
();
#ifdef PADDLE_WITH_HIP
const
auto
&
policy
=
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
());
bool
is_same_offset
=
thrust
::
equal
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
const
auto
&
policy
=
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
());
bool
is_same_offset
=
thrust
::
equal
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
out_offsets_ptr
,
out_offsets_ptr
+
out_offsets
.
numel
(),
grad_offsets_ptr
);
int
dim
=
axis
<
0
?
out_dims
.
size
()
+
axis
:
axis
;
if
(
dim
>=
sparse_dim
)
{
PADDLE_ENFORCE_EQ
(
is_same_offset
,
true
,
phi
::
errors
::
Unimplemented
(
"SparseCooTensor only support same offsets for softmax."
));
SoftmaxGradKernel
<
T
,
Context
>
(
dev_ctx
,
out_values
,
grad_values
,
dim
-
sparse_dim
+
1
,
values
);
return
;
}
auto
nnz
=
out
.
nnz
();
IntT
nvalues
=
std
::
accumulate
(
sizes
.
begin
()
+
sparse_dim
,
sizes
.
end
(),
static_cast
<
IntT
>
(
1
),
std
::
multiplies
<>
());
DenseTensor
values_2
(
*
values
);
values_2
.
Resize
(
phi
::
make_ddim
({
nnz
,
nvalues
}));
DenseTensor
sorted_indices
;
DenseTensor
pool_offsets
;
DenseTensor
pool_sizes
;
std
::
tie
(
sorted_indices
,
pool_offsets
,
pool_sizes
,
std
::
ignore
)
=
phi
::
funcs
::
sparse
::
ComputePoolMax
<
T
,
IntT
,
Context
,
false
>
(
dev_ctx
,
out_indices
,
values_2
,
sizes
,
nvalues
,
dim
);
DenseTensor
bound
=
phi
::
Empty
<
IntT
>
(
dev_ctx
,
{
static_cast
<
IntT
>
(
out_offsets
.
dims
()[
0
])});
IntT
*
bound_ptr
=
bound
.
data
<
IntT
>
();
thrust
::
lower_bound
(
policy
,
thrust_ptr
(
grad_offsets_ptr
),
thrust_ptr
(
grad_offsets_ptr
+
grad_offsets
.
dims
()[
0
]),
thrust_ptr
(
out_offsets_ptr
),
thrust_ptr
(
out_offsets_ptr
)
+
out_offsets
.
dims
()[
0
],
thrust_ptr
(
bound
.
data
<
IntT
>
()));
auto
pool_size
=
pool_offsets
.
dims
()[
0
];
int
total_rows
=
pool_size
*
nvalues
;
dim3
grid
((
total_rows
+
15
)
/
16
);
dim3
block
(
32
,
16
);
SoftmaxCooGradGPURawKernel
<
T
,
IntT
>
<<<
grid
,
block
,
0
,
stream
>>>
(
sorted_indices
.
data
<
IntT
>
(),
pool_size
,
pool_sizes
.
data
<
IntT
>
(),
pool_offsets
.
data
<
IntT
>
(),
nvalues
,
grad_nnz
,
grad_offsets
.
data
<
IntT
>
(),
out_offsets
.
data
<
IntT
>
(),
bound_ptr
,
values_2
.
data
<
T
>
(),
out_values
.
data
<
T
>
(),
grad_values
.
data
<
T
>
(),
total_rows
);
}
template
<
typename
T
,
typename
Context
>
void
SoftmaxCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
dout
,
int
axis
,
SparseCooTensor
*
dx
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
out
.
indices
().
dtype
(),
"SoftmaxCooGradGPUKernel"
,
([
&
]
{
SoftmaxCooGradGPUKernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
out
,
dout
,
axis
,
dx
);
}));
}
}
// namespace sparse
}
// namespace phi
...
...
@@ -115,3 +307,12 @@ PD_REGISTER_KERNEL(softmax_csr_grad,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
PD_REGISTER_KERNEL
(
softmax_coo_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCooGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/gpu/softmax_kernel.cu
浏览文件 @
4ea1d041
...
...
@@ -14,12 +14,25 @@ limitations under the License. */
#include "paddle/phi/kernels/sparse/softmax_kernel.h"
#include <thrust/device_ptr.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/discard_iterator.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>
#include <thrust/transform.h>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/funcs/sparse/softmax.cu.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/softmax_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace
phi
{
...
...
@@ -31,7 +44,6 @@ __global__ void SoftmaxGpuKernel(const IntT* x_crows,
T
*
out_values
,
int
row_number
,
int
total_row_number
)
{
// out = exp(x-x_max) / sum(exp(x-x_max))
int
row
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
int
non_zero_idx
=
threadIdx
.
x
;
if
(
row
>=
total_row_number
)
return
;
...
...
@@ -116,6 +128,132 @@ void SoftmaxCsrKernel(const Context& dev_ctx,
}));
}
template
<
typename
T
,
typename
IntT
>
__global__
void
SoftmaxCooGPURawKernel
(
IntT
*
sorted_pool_indices
,
IntT
*
pool_sizes
,
IntT
*
pool_offsets
,
IntT
nvalues
,
T
*
input_values
,
T
*
output_values
,
int
total_rows
)
{
int
row
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
if
(
row
>=
total_rows
)
return
;
int
tid
=
threadIdx
.
x
;
int
index
=
row
/
nvalues
;
int
j
=
row
%
nvalues
;
IntT
offset
=
pool_offsets
[
index
];
IntT
*
pool_indices
=
sorted_pool_indices
+
offset
;
IntT
pool_indices_size
=
pool_sizes
[
index
];
int
kIteration
=
(
pool_indices_size
+
warpSize
-
1
)
/
warpSize
;
T
max_val
=
-
std
::
numeric_limits
<
T
>::
infinity
();
for
(
int
k
=
0
;
k
<
kIteration
;
++
k
)
{
int
idx
=
tid
+
k
*
warpSize
;
if
(
idx
>=
pool_indices_size
)
break
;
auto
i
=
pool_indices
[
idx
];
auto
cur_value
=
input_values
+
j
+
nvalues
*
i
;
if
(
*
cur_value
>
max_val
)
{
max_val
=
*
cur_value
;
}
}
T
row_max_val
=
phi
::
funcs
::
WarpReduceMax
<
T
>
(
max_val
,
0xFFFFFFFF
);
T
exp_sum
=
0
;
for
(
int
k
=
0
;
k
<
kIteration
;
++
k
)
{
int
idx
=
tid
+
k
*
warpSize
;
if
(
idx
>=
pool_indices_size
)
break
;
auto
i
=
pool_indices
[
idx
];
auto
cur_value
=
input_values
+
j
+
nvalues
*
i
;
auto
cur_out_value
=
output_values
+
i
*
nvalues
+
j
;
auto
functor
=
phi
::
funcs
::
CudaExpFunctor
<
T
>
();
T
exp
=
functor
(
*
cur_value
-
row_max_val
);
exp_sum
+=
exp
;
*
cur_out_value
=
exp
;
}
T
row_exp_sum
=
phi
::
funcs
::
WarpReduceSum
<
T
>
(
exp_sum
,
0xFFFFFFFF
);
row_exp_sum
=
1.0
/
row_exp_sum
;
for
(
int
k
=
0
;
k
<
kIteration
;
++
k
)
{
int
idx
=
tid
+
k
*
warpSize
;
if
(
idx
>=
pool_indices_size
)
break
;
auto
i
=
pool_indices
[
idx
];
auto
cur_out_value
=
output_values
+
i
*
nvalues
+
j
;
*
cur_out_value
*=
row_exp_sum
;
}
}
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SoftmaxCooGPUKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
int
axis
,
SparseCooTensor
*
out
)
{
auto
indices
=
x
.
indices
();
auto
values
=
x
.
values
();
const
auto
x_dims
=
x
.
dims
();
const
std
::
vector
<
IntT
>
sizes
=
phi
::
vectorize
<
IntT
>
(
x_dims
);
const
auto
sparse_dim
=
x
.
sparse_dim
();
const
IntT
x_nnz
=
x
.
nnz
();
DenseTensor
out_indices
(
indices
);
DenseTensor
out_values
=
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
values
);
out
->
SetMember
(
out_indices
,
out_values
,
x
.
dims
(),
x
.
coalesced
());
int
dim
=
axis
<
0
?
x_dims
.
size
()
+
axis
:
axis
;
/* If dim is greater than or equal to sparse_dim, the dense softmax is used.
*/
if
(
dim
>=
sparse_dim
)
{
SoftmaxKernel
<
T
,
Context
>
(
dev_ctx
,
values
,
dim
-
sparse_dim
+
1
,
&
out_values
);
return
;
}
auto
stream
=
dev_ctx
.
stream
();
IntT
nvalues
=
std
::
accumulate
(
sizes
.
begin
()
+
sparse_dim
,
sizes
.
end
(),
static_cast
<
IntT
>
(
1
),
std
::
multiplies
<>
());
auto
values_2
=
values
.
Resize
({
x_nnz
,
nvalues
});
/* Compute independent pools of indices */
DenseTensor
sorted_indices
;
DenseTensor
pool_offsets
;
DenseTensor
pool_sizes
;
std
::
tie
(
sorted_indices
,
pool_offsets
,
pool_sizes
,
std
::
ignore
)
=
phi
::
funcs
::
sparse
::
ComputePoolMax
<
T
,
IntT
,
Context
,
false
>
(
dev_ctx
,
indices
,
values_2
,
sizes
,
nvalues
,
static_cast
<
IntT
>
(
dim
));
auto
pool_size
=
pool_offsets
.
dims
()[
0
];
auto
out_values_ptr
=
out_values
.
data
<
T
>
();
auto
values_ptr
=
values
.
data
<
T
>
();
int
total_rows
=
pool_size
*
nvalues
;
dim3
grid
((
total_rows
+
15
)
/
16
);
dim3
block
(
32
,
16
);
SoftmaxCooGPURawKernel
<
T
,
IntT
>
<<<
grid
,
block
,
0
,
stream
>>>
(
sorted_indices
.
data
<
IntT
>
(),
pool_sizes
.
data
<
IntT
>
(),
pool_offsets
.
data
<
IntT
>
(),
nvalues
,
values_ptr
,
out_values_ptr
,
total_rows
);
}
template
<
typename
T
,
typename
Context
>
void
SoftmaxCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
int
axis
,
SparseCooTensor
*
out
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
x
.
indices
().
dtype
(),
"SoftmaxCooGPUKernel"
,
([
&
]
{
SoftmaxCooGPUKernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
x
,
axis
,
out
);
}));
}
}
// namespace sparse
}
// namespace phi
...
...
@@ -127,3 +265,12 @@ PD_REGISTER_KERNEL(softmax_csr,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
PD_REGISTER_KERNEL
(
softmax_coo
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCooKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/softmax_grad_kernel.h
浏览文件 @
4ea1d041
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
...
...
@@ -26,5 +27,12 @@ void SoftmaxCsrGradKernel(const Context& dev_ctx,
int
axis
,
SparseCsrTensor
*
dx
);
template
<
typename
T
,
typename
Context
>
void
SoftmaxCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
dout
,
int
axis
,
SparseCooTensor
*
dx
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/softmax_kernel.h
浏览文件 @
4ea1d041
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
...
...
@@ -25,5 +26,11 @@ void SoftmaxCsrKernel(const Context& dev_ctx,
int
axis
,
SparseCsrTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
SoftmaxCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
int
axis
,
SparseCooTensor
*
out
);
}
// namespace sparse
}
// namespace phi
python/paddle/fluid/tests/unittests/test_sparse_softmax_op.py
浏览文件 @
4ea1d041
...
...
@@ -18,8 +18,12 @@ import numpy as np
import
scipy.sparse
as
sp
import
paddle
import
paddle.nn.functional
as
F
np
.
random
.
seed
(
2022
)
devices
=
[
'cpu'
]
if
paddle
.
device
.
get_device
()
!=
"cpu"
:
devices
.
append
(
paddle
.
device
.
get_device
())
class
TestCsrSoftmax
(
unittest
.
TestCase
):
...
...
@@ -124,5 +128,168 @@ class TestCsrSoftmax(unittest.TestCase):
np
.
testing
.
assert_allclose
(
csr
.
grad
.
values
().
numpy
(),
dx
,
rtol
=
1e-05
)
class
TestCooSoftmax
(
unittest
.
TestCase
):
def
sparse_softmax
(
self
,
sparse
,
dense_shape
,
sparse_dim
,
dim
):
"""
sparse softmax algorithm in Python.
"""
inf
=
float
(
'inf'
)
indices
=
sparse
.
indices
()
values
=
sparse
.
values
()
size
=
sparse
.
shape
dense_size
=
tuple
(
size
[
sparse_dim
:])
dense_dim
=
len
(
dense_size
)
if
dim
<
sparse_dim
:
nnz
=
sparse
.
nnz
()
# compute pool indices
strides
=
np
.
ones
((
sparse_dim
,
1
))
for
i
in
reversed
(
range
(
sparse_dim
-
1
)):
strides
[
i
,
0
]
=
strides
[
i
+
1
,
0
]
*
size
[
i
+
1
]
strides
[
dim
,
0
]
=
0
strides
=
paddle
.
to_tensor
(
strides
,
dtype
=
indices
.
dtype
)
pool
=
paddle
.
sum
((
indices
*
strides
),
axis
=
0
).
numpy
()
i2p
=
{}
for
i
in
range
(
nnz
):
c
=
int
(
pool
[
i
])
if
c
not
in
i2p
:
i2p
[
c
]
=
len
(
i2p
)
pool
[
i
]
=
i2p
[
c
]
mx
=
paddle
.
empty
((
pool
.
max
()
+
1
,)
+
dense_size
).
numpy
()
mx
[:]
=
-
inf
np_values
=
values
.
numpy
()
for
n
in
range
(
nnz
):
p
=
pool
[
n
]
mx
[
p
]
=
np
.
where
(
mx
[
p
]
>
np_values
[
n
],
mx
[
p
],
np_values
[
n
])
# apply exp to (v - mx) and sum the results
exp_values
=
paddle
.
empty_like
(
values
).
numpy
()
exp_sums
=
np
.
zeros_like
(
mx
)
for
n
in
range
(
nnz
):
p
=
pool
[
n
]
v
=
exp_values
[
n
]
=
np
.
exp
(
np_values
[
n
]
-
mx
[
p
])
exp_sums
[
p
]
=
exp_sums
[
p
]
+
v
# normalize with the sum of exponents
for
n
in
range
(
nnz
):
p
=
pool
[
n
]
exp_values
[
n
]
=
exp_values
[
n
]
/
exp_sums
[
p
]
return
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
exp_values
,
dense_shape
)
elif
dim
<
sparse_dim
+
dense_dim
:
return
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
F
.
softmax
(
values
,
dim
-
sparse_dim
+
1
),
size
)
else
:
print
(
"`dim(=%s)` must be smaller than `sparse_dim(=%s) + dense_dim(=%s)`"
%
(
dim
,
sparse_dim
,
dense_dim
)
)
def
check_run
(
self
,
dense_shape
):
mask
=
np
.
random
.
rand
(
*
dense_shape
)
<
0.5
np_x
=
np
.
random
.
rand
(
*
dense_shape
)
*
mask
for
device
in
devices
:
paddle
.
device
.
set_device
(
device
)
for
sparse_dim
in
range
(
1
,
len
(
dense_shape
)):
coo
=
(
paddle
.
to_tensor
(
np_x
,
stop_gradient
=
False
)
.
detach
()
.
to_sparse_coo
(
sparse_dim
)
)
size
=
coo
.
shape
dense_size
=
tuple
(
size
[
sparse_dim
:])
dense_dim
=
len
(
dense_size
)
for
axis
in
range
(
sparse_dim
+
dense_dim
):
coo
=
(
paddle
.
to_tensor
(
np_x
,
stop_gradient
=
False
)
.
detach
()
.
to_sparse_coo
(
sparse_dim
)
)
coo
.
stop_gradient
=
False
py_out
=
self
.
sparse_softmax
(
coo
,
dense_shape
,
sparse_dim
,
axis
)
m
=
paddle
.
sparse
.
nn
.
Softmax
(
axis
=
axis
)
out
=
m
(
coo
)
np
.
testing
.
assert_allclose
(
py_out
.
indices
().
numpy
(),
out
.
indices
().
numpy
(),
rtol
=
1e-05
,
)
np
.
testing
.
assert_allclose
(
py_out
.
values
().
numpy
(),
out
.
values
().
numpy
(),
rtol
=
1e-05
,
)
out
.
backward
(
coo
.
detach
())
dense_tensor
=
paddle
.
to_tensor
(
np_x
,
stop_gradient
=
False
)
model_dense
=
paddle
.
nn
.
Softmax
(
axis
=
axis
)
dense_out
=
model_dense
(
dense_tensor
)
dense_out
.
backward
(
dense_tensor
.
detach
())
dg_npy
=
dense_tensor
.
grad
.
numpy
()
np
.
testing
.
assert_allclose
(
coo
.
grad
.
to_dense
().
numpy
(),
dg_npy
,
rtol
=
1e-05
)
def
test_softmax2d
(
self
):
self
.
check_run
((
16
,
128
))
def
test_softmax3d
(
self
):
self
.
check_run
((
16
,
16
,
128
))
def
test_softmax2d_static
(
self
):
for
device
in
devices
:
paddle
.
device
.
set_device
(
device
)
np_x
=
np
.
array
([[
11
,
0
,
0
,
14
,
15
],
[
0
,
22
,
0
,
24
,
0
]]).
astype
(
'float32'
)
coo
=
(
paddle
.
to_tensor
(
np_x
,
stop_gradient
=
False
)
.
detach
()
.
to_sparse_coo
(
2
)
)
m
=
paddle
.
sparse
.
nn
.
Softmax
()
dy_out
=
m
(
coo
)
dy_out_dense
=
dy_out
.
to_dense
().
numpy
()
paddle
.
enable_static
()
indices
=
paddle
.
static
.
data
(
name
=
'indices'
,
shape
=
[
2
,
5
],
dtype
=
'int32'
)
values
=
paddle
.
static
.
data
(
name
=
'values'
,
shape
=
[
5
,
1
],
dtype
=
'float32'
)
dense_shape
=
[
2
,
5
]
sp_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
dense_shape
)
sparse_softmax
=
paddle
.
sparse
.
nn
.
Softmax
()
sp_y
=
sparse_softmax
(
sp_x
)
out
=
sp_y
.
to_dense
()
exe
=
paddle
.
static
.
Executor
()
indices_data
=
[[
0
,
0
,
0
,
1
,
1
],
[
0
,
3
,
4
,
1
,
3
]]
values_data
=
np
.
array
([
11
,
14
,
15
,
22
,
24
]).
astype
(
'float32'
)
fetch
=
exe
.
run
(
feed
=
{
'indices'
:
indices_data
,
'values'
:
values_data
},
fetch_list
=
[
out
],
return_numpy
=
True
,
)
np
.
testing
.
assert_allclose
(
dy_out_dense
,
fetch
[
0
],
rtol
=
1e-5
)
paddle
.
disable_static
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/sparse/nn/functional/activation.py
浏览文件 @
4ea1d041
...
...
@@ -57,7 +57,6 @@ def relu(x, name=None):
return
out
@
dygraph_only
def
softmax
(
x
,
axis
=-
1
,
name
=
None
):
r
"""
sparse softmax activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
...
...
@@ -112,8 +111,35 @@ def softmax(x, axis=-1, name=None):
# values=[0.34132850, 0.29843223, 0.36023921, 0.20176248, 0.41964680,
# 0.37859070, 0.30015594, 0.26316854, 0.16354506, 0.27313042])
coo = x.to_sparse_coo(sparse_dim=2)
print(coo)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
# [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
# values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241,
# 0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489])
out = paddle.sparse.nn.functional.softmax(coo)
print(out)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
# [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
# values=[0.34132853, 0.29843226, 0.36023924, 0.20176250, 0.41964683,
# 0.37859073, 0.30015597, 0.26316857, 0.16354507, 0.27313042])
"""
return
_C_ops
.
sparse_softmax
(
x
,
axis
)
if
in_dynamic_mode
():
return
_C_ops
.
sparse_softmax
(
x
,
axis
)
else
:
op_type
=
'sparse_softmax'
helper
=
LayerHelper
(
op_type
)
out
=
helper
.
create_sparse_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'x'
:
x
},
outputs
=
{
'out'
:
out
},
attrs
=
{
'axis'
:
axis
},
)
return
out
@
dygraph_only
...
...
python/paddle/sparse/nn/layer/activation.py
浏览文件 @
4ea1d041
...
...
@@ -116,6 +116,22 @@ class Softmax(Layer):
# cols=[0, 1, 3, 1, 2, 0, 1],
# values=[0.23070428, 0.27815846, 0.49113727, 0.67227983, 0.32772022,
# 0.49353254, 0.50646752])
coo = x.to_sparse_coo(sparse_dim=2)
print(coo)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
# [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
# values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241,
# 0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489])
out = softmax(coo)
print(out)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
# [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
# values=[0.34132853, 0.29843226, 0.36023924, 0.20176250, 0.41964683,
# 0.37859073, 0.30015597, 0.26316857, 0.16354507, 0.27313042])
"""
def
__init__
(
self
,
axis
=-
1
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录