未验证 提交 4e5fb733 编写于 作者: Q qipengh 提交者: GitHub

[MLU]add assign op of mlu device (#42591)

上级 c6f49f0b
...@@ -180,6 +180,11 @@ void TensorFromArray(const T* src, const size_t& array_size, ...@@ -180,6 +180,11 @@ void TensorFromArray(const T* src, const size_t& array_size,
reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream()); reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
} }
#endif #endif
#ifdef PADDLE_WITH_MLU
else if (platform::is_mlu_place(dst_place)) { // NOLINT
memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
}
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE #ifdef PADDLE_WITH_CUSTOM_DEVICE
else if (platform::is_custom_place(dst_place)) { // NOLINT else if (platform::is_custom_place(dst_place)) { // NOLINT
memory::Copy( memory::Copy(
...@@ -247,9 +252,7 @@ void TensorFromVector(const std::vector<T>& src, ...@@ -247,9 +252,7 @@ void TensorFromVector(const std::vector<T>& src,
#endif #endif
#ifdef PADDLE_WITH_MLU #ifdef PADDLE_WITH_MLU
else if (platform::is_mlu_place(dst_place)) { // NOLINT else if (platform::is_mlu_place(dst_place)) { // NOLINT
memory::Copy( memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
dst_place, dst_ptr, src_place, src_ptr, size,
reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
} }
#endif #endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE #ifdef PADDLE_WITH_CUSTOM_DEVICE
...@@ -448,9 +451,7 @@ inline void TensorToVector(const Tensor& src, ...@@ -448,9 +451,7 @@ inline void TensorToVector(const Tensor& src,
#endif #endif
#ifdef PADDLE_WITH_MLU #ifdef PADDLE_WITH_MLU
else if (platform::is_mlu_place(src.place())) { // NOLINT else if (platform::is_mlu_place(src.place())) { // NOLINT
memory::Copy( memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
dst_place, dst_ptr, src.place(), src_ptr, size,
reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
} }
#endif #endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE #ifdef PADDLE_WITH_CUSTOM_DEVICE
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/operators/assign_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
template <typename T>
class AssignMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* out = ctx.Output<framework::LoDTensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc x_desc(*x);
MLUCnnlTensorDesc out_desc(*out);
MLUCnnl::Assign(ctx, x_desc.get(), GetBasePtr(x), out_desc.get(),
GetBasePtr(out));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(assign, ops::AssignMLUKernel<int>,
ops::AssignMLUKernel<float>,
ops::AssignMLUKernel<plat::float16>,
ops::AssignMLUKernel<bool>)
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/assign_value_op.h"
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(assign_value, ops::AssignValueKernel<bool>,
ops::AssignValueKernel<int>,
ops::AssignValueKernel<int64_t>,
ops::AssignValueKernel<float>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
paddle.enable_static()
SEED = 2022
class TestAssign(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "assign"
self.init_dtype()
x = np.random.random([3, 3]).astype(self.dtype)
self.inputs = {'X': x}
self.attrs = {}
self.outputs = {'Out': x}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import sys
sys.path.append("..")
import op_test
import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
paddle.enable_static()
numpy.random.seed(2022)
class TestAssignValueMLUOp(op_test.OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "assign_value"
self.inputs = {}
self.attrs = {}
self.init_data()
self.attrs["shape"] = self.value.shape
self.attrs["dtype"] = framework.convert_np_dtype_to_dtype_(
self.value.dtype)
self.outputs = {"Out": self.value}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.float32)
self.attrs["fp32_values"] = [float(v) for v in self.value.flat]
def test_check_output(self):
self.check_output_with_place(self.place)
class TestAssignValueMLUOp2(TestAssignValueMLUOp):
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.int32)
self.attrs["int32_values"] = [int(v) for v in self.value.flat]
class TestAssignValueMLUOp3(TestAssignValueMLUOp):
def init_data(self):
self.value = numpy.random.random(size=(2, 5)).astype(numpy.int64)
self.attrs["int64_values"] = [int(v) for v in self.value.flat]
class TestAssignValueMLUOp4(TestAssignValueMLUOp):
def init_data(self):
self.value = numpy.random.choice(
a=[False, True], size=(2, 5)).astype(numpy.bool)
self.attrs["bool_values"] = [int(v) for v in self.value.flat]
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册