未验证 提交 4e5a14c1 编写于 作者: J JYChen 提交者: GitHub

remove fluid.average / fluid.metric (#52588)

* remove fluid.average / fluid.metric

* fix usage in test
上级 15251291
......@@ -59,8 +59,6 @@ from . import optimizer
from . import backward
from .backward import gradients
from . import regularizer
from . import average
from . import metrics
from . import incubate
from .param_attr import ParamAttr, WeightNormParamAttr
from .data_feeder import DataFeeder
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import warnings
"""
Class of all kinds of Average.
All Averages are accomplished via Python totally.
They do not change Paddle's Program, nor do anything to
modify NN model's configuration. They are completely
wrappers of Python functions.
"""
__all__ = ["WeightedAverage"]
def _is_number_(var):
return (
isinstance(var, int)
or isinstance(var, float)
or (isinstance(var, np.ndarray) and var.shape == (1,))
)
def _is_number_or_matrix_(var):
return _is_number_(var) or isinstance(var, np.ndarray)
class WeightedAverage:
"""
Calculate weighted average.
The average calculating is accomplished via Python totally.
They do not change Paddle's Program, nor do anything to
modify NN model's configuration. They are completely
wrappers of Python functions.
Examples:
.. code-block:: python
import paddle.fluid as fluid
avg = fluid.average.WeightedAverage()
avg.add(value=2.0, weight=1)
avg.add(value=4.0, weight=2)
avg.eval()
# The result is 3.333333333.
# For (2.0 * 1 + 4.0 * 2) / (1 + 2) = 3.333333333
"""
def __init__(self):
warnings.warn(
"The %s is deprecated, please use fluid.metrics.Accuracy instead."
% (self.__class__.__name__),
Warning,
)
self.reset()
def reset(self):
self.numerator = None
self.denominator = None
def add(self, value, weight):
if not _is_number_or_matrix_(value):
raise ValueError(
"The 'value' must be a number(int, float) or a numpy ndarray."
)
if not _is_number_(weight):
raise ValueError("The 'weight' must be a number(int, float).")
if self.numerator is None or self.denominator is None:
self.numerator = value * weight
self.denominator = weight
else:
self.numerator += value * weight
self.denominator += weight
def eval(self):
if self.numerator is None or self.denominator is None:
raise ValueError(
"There is no data to be averaged in WeightedAverage."
)
return self.numerator / self.denominator
此差异已折叠。
......@@ -19,7 +19,6 @@ from eager_op_test import OpTest
import paddle
from paddle import fluid
from paddle.fluid import metrics
class TestAucOp(OpTest):
......@@ -49,17 +48,17 @@ class TestAucOp(OpTest):
"slide_steps": slide_steps,
}
python_auc = metrics.Auc(
python_auc = paddle.metric.Auc(
name="auc", curve='ROC', num_thresholds=num_thresholds
)
python_auc.update(pred, labels)
pos = python_auc._stat_pos * 2
pos = python_auc._stat_pos.tolist() * 2
pos.append(1)
neg = python_auc._stat_neg * 2
neg = python_auc._stat_neg.tolist() * 2
neg.append(1)
self.outputs = {
'AUC': np.array(python_auc.eval()),
'AUC': np.array(python_auc.accumulate()),
'StatPosOut': np.array(pos),
'StatNegOut': np.array(neg),
}
......@@ -91,7 +90,7 @@ class TestGlobalAucOp(OpTest):
"slide_steps": slide_steps,
}
python_auc = metrics.Auc(
python_auc = paddle.metric.Auc(
name="auc", curve='ROC', num_thresholds=num_thresholds
)
python_auc.update(pred, labels)
......@@ -99,7 +98,7 @@ class TestGlobalAucOp(OpTest):
pos = python_auc._stat_pos
neg = python_auc._stat_neg
self.outputs = {
'AUC': np.array(python_auc.eval()),
'AUC': np.array(python_auc.accumulate()),
'StatPosOut': np.array(pos),
'StatNegOut': np.array(neg),
}
......
......@@ -17,7 +17,7 @@ import unittest
import numpy as np
from eager_op_test import OpTest
from paddle.fluid import metrics
import paddle
class TestAucSinglePredOp(OpTest):
......@@ -48,19 +48,19 @@ class TestAucSinglePredOp(OpTest):
"slide_steps": slide_steps,
}
python_auc = metrics.Auc(
python_auc = paddle.metric.Auc(
name="auc", curve='ROC', num_thresholds=num_thresholds
)
for i in range(128):
pred[i][1] = pred[i][0]
python_auc.update(pred, labels)
pos = python_auc._stat_pos * 2
pos = python_auc._stat_pos.tolist() * 2
pos.append(1)
neg = python_auc._stat_neg * 2
neg = python_auc._stat_neg.tolist() * 2
neg.append(1)
self.outputs = {
'AUC': np.array(python_auc.eval()),
'AUC': np.array(python_auc.accumulate()),
'StatPosOut': np.array(pos),
'StatNegOut': np.array(neg),
}
......@@ -93,7 +93,7 @@ class TestAucGlobalSinglePredOp(OpTest):
"slide_steps": slide_steps,
}
python_auc = metrics.Auc(
python_auc = paddle.metric.Auc(
name="auc", curve='ROC', num_thresholds=num_thresholds
)
for i in range(128):
......@@ -103,7 +103,7 @@ class TestAucGlobalSinglePredOp(OpTest):
pos = python_auc._stat_pos
neg = python_auc._stat_neg
self.outputs = {
'AUC': np.array(python_auc.eval()),
'AUC': np.array(python_auc.accumulate()),
'StatPosOut': np.array(pos),
'StatNegOut': np.array(neg),
}
......
......@@ -564,8 +564,6 @@ class TestLACModel(unittest.TestCase):
)
step = 0
chunk_evaluator = fluid.metrics.ChunkEvaluator()
chunk_evaluator.reset()
loss_data = []
for epoch_id in range(args.epoch):
......
......@@ -128,7 +128,7 @@ def train(conf_dict, to_static):
parameter_list=net.parameters(),
)
metric = fluid.metrics.Auc(name="auc")
metric = paddle.metric.Auc(name="auc")
global_step = 0
losses = []
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册