Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4df95edc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4df95edc
编写于
1月 17, 2018
作者:
C
Cao Ying
提交者:
GitHub
1月 17, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7602 from guoshengCS/add-dot_product_attention
Add Python wrapper for dot-product-attention.
上级
939e1b1a
db959d63
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
140 addition
and
4 deletion
+140
-4
doc/api/v2/fluid/layers.rst
doc/api/v2/fluid/layers.rst
+6
-0
doc/api/v2/fluid/nets.rst
doc/api/v2/fluid/nets.rst
+6
-0
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+71
-0
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+53
-0
python/paddle/v2/fluid/tests/test_matmul_op.py
python/paddle/v2/fluid/tests/test_matmul_op.py
+4
-4
未找到文件。
doc/api/v2/fluid/layers.rst
浏览文件 @
4df95edc
...
...
@@ -364,6 +364,12 @@ split
.. autofunction:: paddle.v2.fluid.layers.split
:noindex:
matmul
------
.. autofunction:: paddle.v2.fluid.layers.matmul
:noindex:
logsigmoid
----------
.. autofunction:: paddle.v2.fluid.layers.logsigmoid
...
...
doc/api/v2/fluid/nets.rst
浏览文件 @
4df95edc
...
...
@@ -25,3 +25,9 @@ glu
.. autofunction:: paddle.v2.fluid.nets.glu
:noindex:
dot_product_attention
---------------------
.. autofunction:: paddle.v2.fluid.nets.dot_product_attention
:noindex:
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
4df95edc
...
...
@@ -50,6 +50,7 @@ __all__ = [
'sequence_last_step'
,
'dropout'
,
'split'
,
'matmul'
,
]
...
...
@@ -1597,3 +1598,73 @@ def split(input, num_or_sections, dim=-1):
'axis'
:
dim
})
return
outs
def
matmul
(
x
,
y
,
transpose_x
=
False
,
transpose_y
=
False
,
name
=
None
):
"""
Applies matrix multipication to two tensors. Currently only rank 1 to rank
3 input tensors are supported.
The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
- If a transpose flag is specified, the last two dimensions of the tensor
are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
:math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
:math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
:math:`[1, D]` in transposed form.
- After transpose, the two tensors are 2-D or 3-D and matrix multipication
performs in the following way.
- If both are 2-D, they are multiplied like conventional matrices.
- If either is 3-D, it is treated as a stack of matrices residing in the
last two dimensions and a batched matrix multiply supporting broadcast
applies on the two tensors.
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multipication.
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): The input variable which is a Tensor or LoDTensor.
transpose_x (bool): Whether to transpose :math:`x` before multiplication.
transpose_y (bool): Whether to transpose :math:`y` before multiplication.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The product Tensor variable.
Examples:
.. code-block:: python
# Examples to clarify shapes of the inputs and output
# x: [B, M, K], y: [B, K, N]
fluid.layers.matmul(x, y) # out: [B, M, N]
# x: [B, M, K], y: [K, N]
fluid.layers.matmul(x, y) # out: [B, M, N]
# x: [B, M, K], y: [K]
fluid.layers.matmul(x, y) # out: [B, M]
# x: [M, K], y: [K, N]
fluid.layers.matmul(x, y) # out: [M, N]
# x: [K], y: [K]
fluid.layers.matmul(x, y) # out: [1]
# x: [M], y: [N]
fluid.layers.matmul(x, y, True, True) # out: [M, N]
"""
helper
=
LayerHelper
(
'matmul'
,
**
locals
())
assert
max
(
len
(
x
.
shape
),
len
(
y
.
shape
)
)
<=
3
,
'Currently only rank 1 to rank 3 input tensors are supported.'
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'matmul'
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'transpose_X'
:
transpose_x
,
'transpose_Y'
:
transpose_y
})
return
out
python/paddle/v2/fluid/nets.py
浏览文件 @
4df95edc
...
...
@@ -17,6 +17,7 @@ __all__ = [
"simple_img_conv_pool"
,
"sequence_conv_pool"
,
"glu"
,
"dot_product_attention"
,
]
...
...
@@ -150,3 +151,55 @@ def glu(input, dim=-1):
act_b
=
layers
.
sigmoid
(
x
=
b
)
out
=
layers
.
elementwise_mul
(
x
=
a
,
y
=
act_b
)
return
out
def
dot_product_attention
(
querys
,
keys
,
values
):
"""
The dot-product attention.
Attention mechanism can be seen as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility
function (dot-product here) of the query with the corresponding key.
The dot-product attention can be implemented through (batch) matrix
multipication as follows:
.. math::
Attention(Q, K, V)= softmax(QK^\mathrm{T})V
Refer to `Attention Is All You Need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Note that batch data containing sequences with different lengths is not
supported by this because of the (batch) matrix multipication.
Args:
query (Variable): The input variable which is a Tensor or LoDTensor.
key (Variable): The input variable which is a Tensor or LoDTensor.
value (Variable): The input variable which is a Tensor or LoDTensor.
Returns:
tuple: The Tensor variables representing the output and attention scores.
Examples:
.. code-block:: python
# Suppose q, k, v are tensor variables with the following shape:
# q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
out.shape # [3, 5, 10]
attn_scores.shape # [3, 5, 6]
"""
assert
keys
.
shape
[
-
2
]
==
values
.
shape
[
-
2
],
'The shapes of keys and values mismatch.'
assert
querys
.
shape
[
-
1
]
==
keys
.
shape
[
-
1
],
'The shapes of querys and keys mismatch.'
product
=
layers
.
matmul
(
x
=
querys
,
y
=
keys
,
transpose_y
=
True
)
attn_scores
=
layers
.
reshape
(
x
=
layers
.
reshape
(
x
=
product
,
shape
=
[
-
1
,
product
.
shape
[
-
1
]],
act
=
'softmax'
),
shape
=
product
.
shape
)
out
=
layers
.
matmul
(
attn_scores
,
values
)
return
out
,
attn_scores
python/paddle/v2/fluid/tests/test_matmul_op.py
浏览文件 @
4df95edc
...
...
@@ -96,18 +96,18 @@ class Generator(object):
self
.
outputs
=
{
'Out'
:
Out
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-
2
)
self
.
check_output
(
atol
=
1e-
3
)
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.5
)
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
1e-3
)
def
test_check_grad_ignore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
"X"
))
[
'Y'
],
'Out'
,
max_relative_error
=
1e-3
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ignore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'Y'
))
[
'X'
],
'Out'
,
max_relative_error
=
1e-3
,
no_grad_set
=
set
(
'Y'
))
# Generate test cases for all possibilities
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录