Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4dda18a8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4dda18a8
编写于
10月 15, 2021
作者:
Z
Zeng Jinle
提交者:
GitHub
10月 15, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix momentum ops (#36452)
上级
8566cc98
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
41 addition
and
35 deletion
+41
-35
paddle/fluid/operators/optimizers/momentum_op.h
paddle/fluid/operators/optimizers/momentum_op.h
+35
-32
python/paddle/fluid/tests/unittests/test_merged_momentum_op.py
...n/paddle/fluid/tests/unittests/test_merged_momentum_op.py
+6
-3
未找到文件。
paddle/fluid/operators/optimizers/momentum_op.h
浏览文件 @
4dda18a8
...
...
@@ -173,14 +173,15 @@ class CPUDenseMomentumFunctor {
}
};
template
<
typename
T
,
typename
MT
,
typename
UpdateMethod
>
template
<
typename
T
,
typename
MT
,
RegularizationType
kRegType
,
typename
UpdateMethod
>
class
DenseMomentumFunctor
;
// NOTE(dzh) for performance.
// avoid if/else in inside kernel, implement GPU UseNesterov/NoNesterov as two
// functor.
template
<
typename
T
,
typename
MT
>
class
DenseMomentumFunctor
<
T
,
MT
,
UseNesterov
>
{
template
<
typename
T
,
typename
MT
,
RegularizationType
kRegType
>
class
DenseMomentumFunctor
<
T
,
MT
,
kRegType
,
UseNesterov
>
{
private:
const
T
*
param_
;
const
T
*
grad_
;
...
...
@@ -193,7 +194,6 @@ class DenseMomentumFunctor<T, MT, UseNesterov> {
T
*
param_out_
;
MT
*
velocity_out_
;
MT
*
master_param_out_
;
const
RegularizationType
regularization_flag_
;
const
MT
regularization_coeff_
;
public:
...
...
@@ -201,7 +201,6 @@ class DenseMomentumFunctor<T, MT, UseNesterov> {
const
MultiPrecisionType
<
MT
>*
learning_rate
,
const
MT
*
master_param
,
const
MT
mu
,
const
MT
rescale_grad
,
const
int64_t
num
,
const
RegularizationType
regularization_flag
,
const
MT
regularization_coeff
,
T
*
param_out
,
MT
*
velocity_out
,
MT
*
master_param_out
)
:
param_
(
param
),
...
...
@@ -215,7 +214,6 @@ class DenseMomentumFunctor<T, MT, UseNesterov> {
param_out_
(
param_out
),
velocity_out_
(
velocity_out
),
master_param_out_
(
master_param_out
),
regularization_flag_
(
regularization_flag
),
regularization_coeff_
(
regularization_coeff
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
// put memory access in register
...
...
@@ -225,9 +223,9 @@ class DenseMomentumFunctor<T, MT, UseNesterov> {
const
MT
lr
=
static_cast
<
MT
>
(
lr_
[
0
]);
const
MT
velocity
=
velocity_
[
i
];
grad
=
regularization_flag_
==
RegularizationType
::
kL2DECAY
?
grad
+
regularization_coeff_
*
param
:
grad
;
if
(
kRegType
==
RegularizationType
::
kL2DECAY
)
{
grad
+=
regularization_coeff_
*
param
;
}
MT
velocity_out
=
velocity
*
mu_
+
grad
;
MT
param_out
=
param
-
(
grad
+
velocity_out
*
mu_
)
*
lr
;
...
...
@@ -240,8 +238,8 @@ class DenseMomentumFunctor<T, MT, UseNesterov> {
}
};
template
<
typename
T
,
typename
MT
>
class
DenseMomentumFunctor
<
T
,
MT
,
NoNesterov
>
{
template
<
typename
T
,
typename
MT
,
RegularizationType
kRegType
>
class
DenseMomentumFunctor
<
T
,
MT
,
kRegType
,
NoNesterov
>
{
private:
const
T
*
param_
;
const
T
*
grad_
;
...
...
@@ -254,7 +252,6 @@ class DenseMomentumFunctor<T, MT, NoNesterov> {
T
*
param_out_
;
MT
*
velocity_out_
;
MT
*
master_param_out_
;
const
RegularizationType
regularization_flag_
;
const
MT
regularization_coeff_
;
public:
...
...
@@ -262,7 +259,6 @@ class DenseMomentumFunctor<T, MT, NoNesterov> {
const
MultiPrecisionType
<
MT
>*
learning_rate
,
const
MT
*
master_param
,
const
MT
mu
,
const
MT
rescale_grad
,
const
int64_t
num
,
const
RegularizationType
regularization_flag
,
const
MT
regularization_coeff
,
T
*
param_out
,
MT
*
velocity_out
,
MT
*
master_param_out
)
:
param_
(
param
),
...
...
@@ -276,7 +272,6 @@ class DenseMomentumFunctor<T, MT, NoNesterov> {
param_out_
(
param_out
),
velocity_out_
(
velocity_out
),
master_param_out_
(
master_param_out
),
regularization_flag_
(
regularization_flag
),
regularization_coeff_
(
regularization_coeff
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
// put memory access in register
...
...
@@ -286,9 +281,9 @@ class DenseMomentumFunctor<T, MT, NoNesterov> {
const
MT
lr
=
static_cast
<
MT
>
(
lr_
[
0
]);
const
MT
velocity
=
velocity_
[
i
];
grad
=
regularization_flag_
==
RegularizationType
::
kL2DECAY
?
grad
+
regularization_coeff_
*
param
:
grad
;
if
(
kRegType
==
RegularizationType
::
kL2DECAY
)
{
grad
+=
regularization_coeff_
*
param
;
}
MT
velocity_out
=
velocity
*
mu_
+
grad
;
MT
param_out
=
param
-
lr
*
velocity_out
;
...
...
@@ -522,23 +517,31 @@ class MomentumOpKernel : public framework::OpKernel<T> {
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
param
->
numel
());
if
(
use_nesterov
)
{
DenseMomentumFunctor
<
T
,
MT
,
UseNesterov
>
functor
(
param
->
data
<
T
>
(),
grad
->
data
<
T
>
(),
velocity
->
data
<
MT
>
(),
learning_rate
->
data
<
MPDType
>
(),
master_in_data
,
mu
,
rescale_grad
,
param
->
numel
(),
regularization_flag
,
regularization_coeff
,
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
velocity_out
->
mutable_data
<
MT
>
(
ctx
.
GetPlace
()),
master_out_data
);
for_range
(
functor
);
#define PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL(__nesterov, __reg_type) \
DenseMomentumFunctor<T, MT, __reg_type, __nesterov> functor( \
param->data<T>(), grad->data<T>(), velocity->data<MT>(), \
learning_rate->data<MPDType>(), master_in_data, mu, rescale_grad, \
param->numel(), regularization_coeff, \
param_out->mutable_data<T>(ctx.GetPlace()), \
velocity_out->mutable_data<MT>(ctx.GetPlace()), master_out_data); \
for_range(functor);
if
(
use_nesterov
)
{
if
(
regularization_flag
==
RegularizationType
::
kL2DECAY
)
{
PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL
(
UseNesterov
,
RegularizationType
::
kL2DECAY
);
}
else
{
PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL
(
UseNesterov
,
RegularizationType
::
kNONE
);
}
}
else
{
DenseMomentumFunctor
<
T
,
MT
,
NoNesterov
>
functor
(
param
->
data
<
T
>
(),
grad
->
data
<
T
>
(),
velocity
->
data
<
MT
>
()
,
learning_rate
->
data
<
MPDType
>
(),
master_in_data
,
mu
,
rescale_grad
,
param
->
numel
(),
regularization_flag
,
regularization_coeff
,
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())
,
velocity_out
->
mutable_data
<
MT
>
(
ctx
.
GetPlace
()),
master_out_data
);
for_range
(
functor
);
if
(
regularization_flag
==
RegularizationType
::
kL2DECAY
)
{
PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL
(
NoNesterov
,
RegularizationType
::
kL2DECAY
);
}
else
{
PADDLE_LAUNCH_DENSE_MOMENTUM_KERNEL
(
NoNesterov
,
RegularizationType
::
kNONE
);
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_merged_momentum_op.py
浏览文件 @
4dda18a8
...
...
@@ -102,7 +102,7 @@ def run_momentum_op(params,
'Param'
:
p
,
'Grad'
:
g
,
'Velocity'
:
v
,
'LearningRate'
:
lr_var
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
p
,
'VelocityOut'
:
v
}
if
multi_precision
:
...
...
@@ -115,7 +115,7 @@ def run_momentum_op(params,
'Param'
:
param_vars
,
'Grad'
:
grad_vars
,
'Velocity'
:
velocity_vars
,
'LearningRate'
:
lr_var
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
param_vars
,
'VelocityOut'
:
velocity_vars
}
if
multi_precision
:
...
...
@@ -176,7 +176,10 @@ class TestMergedMomentum(unittest.TestCase):
outs2
=
run_op
(
False
)
self
.
assertEqual
(
len
(
outs1
),
len
(
outs2
))
for
i
,
(
out1
,
out2
)
in
enumerate
(
zip
(
outs1
,
outs2
)):
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
,
atol
=
1e-7
))
if
isinstance
(
place
,
paddle
.
CUDAPlace
):
self
.
assertTrue
(
np
.
array_equal
(
out1
,
out2
))
else
:
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
,
atol
=
1e-7
))
def
get_places
(
self
):
places
=
[
paddle
.
CPUPlace
()]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录