Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4d2994cb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4d2994cb
编写于
8月 11, 2021
作者:
Y
Yuang Liu
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize fused allreduce in raw program (#34509)
上级
6a9fac14
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
116 addition
and
60 deletion
+116
-60
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
...istributed/fleet/meta_optimizers/raw_program_optimizer.py
+116
-60
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
浏览文件 @
4d2994cb
...
...
@@ -217,9 +217,13 @@ class RawProgramOptimizer(MetaOptimizerBase):
block
=
self
.
main_program
.
global_block
()
ring_id
=
self
.
global_ring_id
param_grads
=
[]
first_backward_idx
=
-
1
# find all grad params
for
op
in
reversed
(
block
.
ops
):
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
first_backward_idx
==
-
1
and
\
is_backward_op
(
op
):
first_backward_idx
=
idx
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
...
...
@@ -234,70 +238,100 @@ class RawProgramOptimizer(MetaOptimizerBase):
grad
=
block
.
var
(
grad_name
)
if
param
.
is_distributed
:
continue
param_grads
.
append
(
grad
)
param_grads
.
append
((
param
,
grad
))
outputs_name_to_idx
=
self
.
__get_ouputs_name_to_idx
(
first_backward_idx
,
block
)
segments
=
[]
# structure of grad_param_segments is
# [([grad0, grad1], [param0, param1]), ([grad2, grad3], [param2, param3])]
# each entry of the list is a tuple stores the grads segment list and
# the corresponding params segment list
grad_param_segments
=
[]
last_dtype
=
None
# split the grad based on dtype and fused size
for
var
in
param_grads
:
if
len
(
segments
)
==
0
\
or
len
(
segments
[
-
1
])
==
self
.
fuse_grad_size_in_num
\
or
var
.
dtype
!=
last_dtype
:
segments
.
append
([
var
]
)
last_dtype
=
var
.
dtype
for
param
,
grad
in
param_grads
:
if
len
(
grad_param_
segments
)
==
0
\
or
len
(
grad_param_segments
[
-
1
][
0
])
==
self
.
fuse_grad_size_in_num
\
or
grad
.
dtype
!=
last_dtype
:
grad_param_segments
.
append
(([
grad
],
[
param
])
)
last_dtype
=
grad
.
dtype
else
:
segments
[
-
1
].
append
(
var
)
grad_param_segments
[
-
1
][
0
].
append
(
grad
)
grad_param_segments
[
-
1
][
1
].
append
(
param
)
fused_vars
=
[]
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
for
segment
in
segments
:
# insert coalesce tensor
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}'
.
format
(
segment
[
0
].
name
)),
dtype
=
segment
[
0
].
dtype
,
persistable
=
True
,
stop_gradient
=
True
)
fused_vars
.
append
(
tmp_var
)
block
.
_insert_op_without_sync
(
idx
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
segment
},
outputs
=
{
"Output"
:
segment
,
"FusedOutput"
:
tmp_var
},
attrs
=
{
"copy_data"
:
True
,
"use_align"
:
True
,
"dtype"
:
segment
[
0
].
dtype
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
if
len
(
grad_param_segments
)
==
0
:
return
# insert the allreduce_sum op
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
for
fused_var
in
fused_vars
:
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
self
.
calc_comm_same_stream
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
not
self
.
calc_comm_same_stream
:
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
fused_vars
=
[
None
]
*
len
(
grad_param_segments
)
for
i
in
range
(
len
(
grad_param_segments
)
-
1
,
-
1
,
-
1
):
# travers the grad_param_segments in backward
# not to use reversed since needs the absolute index value
grad_segment
,
param_segment
=
grad_param_segments
[
i
]
# insert coalesce tensor
fused_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}'
.
format
(
grad_segment
[
0
].
name
)),
dtype
=
grad_segment
[
0
].
dtype
,
persistable
=
False
,
stop_gradient
=
True
)
fused_vars
[
i
]
=
fused_var
after_idx
=
outputs_name_to_idx
[
grad_segment
[
-
1
]][
1
]
block
.
_insert_op_without_sync
(
after_idx
+
1
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
self
.
calc_comm_same_stream
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
not
self
.
calc_comm_same_stream
:
block
.
_insert_op_without_sync
(
after_idx
+
1
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
len
(
fused_vars
)
==
0
:
# update the outputs_name_to_idx after insertion of sync/allreduce ops
outputs_name_to_idx
=
self
.
__get_ouputs_name_to_idx
(
first_backward_idx
,
block
)
# the before_idx is not guaranteed sorted, therefore we have to find the
# topology to insert the coalesce ops
pos_for_coalesce
=
{}
for
i
in
range
(
len
(
grad_param_segments
)
-
1
,
-
1
,
-
1
):
# We separate the insertion of coalesce op and the insertion of sync/allreduce op,
# since that the coalesce op's insertion may invalidate the outputs_name_to_idx
grad_segment
,
param_segment
=
grad_param_segments
[
i
]
before_idx
=
len
(
block
.
ops
)
for
grad
in
outputs_name_to_idx
:
before_idx
=
min
(
before_idx
,
outputs_name_to_idx
[
grad
][
0
])
pos_for_coalesce
[
i
]
=
before_idx
# insert the coalesce op based on the sorted before_idx
pos_for_coalesce
=
sorted
(
pos_for_coalesce
.
items
(),
key
=
lambda
kv
:
(
kv
[
1
],
kv
[
0
]),
reverse
=
True
)
for
i
,
before_idx
in
pos_for_coalesce
:
grad_segment
,
param_segment
=
grad_param_segments
[
i
]
fused_var
=
fused_vars
[
i
]
block
.
_insert_op_without_sync
(
before_idx
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
param_segment
},
outputs
=
{
"Output"
:
grad_segment
,
"FusedOutput"
:
fused_var
},
attrs
=
{
"copy_data"
:
False
,
"use_align"
:
True
,
"dtype"
:
grad_segment
[
0
].
dtype
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
self
.
calc_comm_same_stream
:
block
.
_sync_with_cpp
()
return
...
...
@@ -307,9 +341,31 @@ class RawProgramOptimizer(MetaOptimizerBase):
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
fused_vars
[
0
]},
outputs
=
{
'Out'
:
fused_vars
[
0
]},
inputs
=
{
'X'
:
grad_segment
[
0
]},
outputs
=
{
'Out'
:
grad_segment
[
0
]},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
block
.
_sync_with_cpp
()
def
__get_ouputs_name_to_idx
(
self
,
first_backward_idx
,
block
):
# Each item of outputs_name_to_idx is a pair of idx.
# The first entry of this pair is the idx of the first op generates the grad,
# which is used to indicate the position to insert coalesce op.
# The second entry of this pair is the idx of the last op generates the grad,
# which is used to indicate the position to insert sync and allreduce op.
outputs_name_to_idx
=
{}
for
idx
in
range
(
first_backward_idx
,
len
(
block
.
ops
)):
op
=
block
.
ops
[
idx
]
if
is_optimizer_op
(
op
):
break
for
name
in
op
.
output_arg_names
:
var
=
block
.
var
(
name
)
if
not
outputs_name_to_idx
.
get
(
var
):
# if the grad only be generated by one op
# the first idx and the last ids are identical
outputs_name_to_idx
[
var
]
=
(
idx
,
idx
)
else
:
outputs_name_to_idx
[
var
]
=
(
outputs_name_to_idx
[
var
][
0
],
idx
)
return
outputs_name_to_idx
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录