未验证 提交 4d0ca02b 编写于 作者: F fwenguang 提交者: GitHub

[MLU] add size kernel for mlu (#43450)

上级 79dc32b4
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
template <typename T>
class SizeMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("Input");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<int64_t>(ctx.GetPlace());
int64_t size = x->numel();
FillMLUTensorWithHostValue<int64_t>(ctx, size, out);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(size, ops::SizeMLUKernel<int>,
ops::SizeMLUKernel<int64_t>,
ops::SizeMLUKernel<paddle::platform::float16>,
ops::SizeMLUKernel<float>, ops::SizeMLUKernel<double>,
ops::SizeMLUKernel<bool>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import sys
sys.path.append('..')
from op_test import OpTest
paddle.enable_static()
class TestSizeOp(OpTest):
def setUp(self):
self.op_type = "size"
self.shape = []
self.config()
input = np.zeros(self.shape, dtype='bool')
self.inputs = {'Input': input}
self.outputs = {'Out': np.array([np.size(input)], dtype='int64')}
def config(self):
pass
def test_check_output(self):
self.check_output_with_place(paddle.device.MLUPlace(0))
class TestRank1Tensor(TestSizeOp):
def config(self):
self.shape = [2]
class TestRank2Tensor(TestSizeOp):
def config(self):
self.shape = [2, 3]
class TestRank3Tensor(TestSizeOp):
def config(self):
self.shape = [2, 3, 100]
class TestLargeTensor(TestSizeOp):
def config(self):
self.shape = [2**10]
class TestSizeAPI(unittest.TestCase):
def test_size_static(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
shape1 = [2, 1, 4, 5]
shape2 = [1, 4, 5]
x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1')
x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2')
input_1 = np.random.random(shape1).astype("int32")
input_2 = np.random.random(shape2).astype("int32")
out_1 = paddle.fluid.layers.size(x_1)
out_2 = paddle.fluid.layers.size(x_2)
exe = paddle.static.Executor(place=paddle.MLUPlace(0))
res_1, res_2 = exe.run(feed={
"x_1": input_1,
"x_2": input_2,
},
fetch_list=[out_1, out_2])
assert (np.array_equal(res_1,
np.array([np.size(input_1)
]).astype("int64")))
assert (np.array_equal(res_2,
np.array([np.size(input_2)
]).astype("int64")))
def test_size_imperative(self):
paddle.disable_static(paddle.MLUPlace(0))
input_1 = np.random.random([2, 1, 4, 5]).astype("int32")
input_2 = np.random.random([1, 4, 5]).astype("int32")
x_1 = paddle.to_tensor(input_1)
x_2 = paddle.to_tensor(input_2)
out_1 = paddle.fluid.layers.size(x_1)
out_2 = paddle.fluid.layers.size(x_2)
assert (np.array_equal(out_1.numpy().item(0), np.size(input_1)))
assert (np.array_equal(out_2.numpy().item(0), np.size(input_2)))
paddle.enable_static()
def test_error(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
def test_x_type():
shape = [1, 4, 5]
input_1 = np.random.random(shape).astype("int32")
out_1 = paddle.fluid.layers.size(input_1)
self.assertRaises(TypeError, test_x_type)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册