Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4cc3d9a2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4cc3d9a2
编写于
8月 05, 2021
作者:
S
ShenLiang
提交者:
GitHub
8月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[HybridParallel]Fix bug of p2p for partial_send/recv (#34615)
* fix bug of p2p for partial * fix error
上级
090c863a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
75 addition
and
48 deletion
+75
-48
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+0
-14
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
...ributed/fleet/meta_parallel/pp_utils/p2p_communication.py
+64
-29
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_transformer.py
...e/fluid/tests/unittests/hybrid_parallel_pp_transformer.py
+11
-5
未找到文件。
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
4cc3d9a2
...
...
@@ -64,18 +64,6 @@ class PipelineParallel(MetaParallelBase):
logger
.
info
(
"start broadcast dp parameters"
)
broadcast_dp_parameters
(
self
.
_layers
,
self
.
_hcg
)
def
_set_tensor_trainable
(
self
,
tensor
):
if
tensor
is
None
:
return
if
isinstance
(
tensor
,
tuple
):
for
t
in
tensor
:
if
is_float_tensor
(
t
):
t
.
stop_gradient
=
False
else
:
if
is_float_tensor
(
tensor
):
tensor
.
stop_gradient
=
False
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
'optimizer should be HybridParallelOptimizer subclass.'
)
...
...
@@ -117,7 +105,6 @@ class PipelineParallel(MetaParallelBase):
for
step_id
in
range
(
startup_steps
):
input_tensor
=
p2p
.
recv_forward
()
self
.
_set_tensor_trainable
(
input_tensor
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
p2p
.
send_forward
(
output_tensor
)
...
...
@@ -131,7 +118,6 @@ class PipelineParallel(MetaParallelBase):
for
i
in
range
(
steady_steps
):
last_iter
=
(
i
==
(
steady_steps
-
1
))
self
.
_set_tensor_trainable
(
input_tensor
)
output_tensor
=
self
.
_forward_step
(
input_tensor
)
output_tensor_grad
=
p2p
.
send_forward_recv_backward
(
output_tensor
)
...
...
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
浏览文件 @
4cc3d9a2
...
...
@@ -15,6 +15,8 @@
import
paddle
from
.utils
import
paddle_2_number
,
number_2_dtype
from
...utils.log_util
import
logger
import
numpy
as
np
from
paddle
import
_C_ops
_hcg
=
None
...
...
@@ -40,6 +42,7 @@ class SendRecvMeta:
self
.
recv_shape_message
=
None
self
.
recv_dtype_message
=
None
self
.
recv_stop_gradient
=
None
self
.
has_send_meta
=
False
self
.
has_recv_meta
=
False
...
...
@@ -57,7 +60,11 @@ class SendRecvMeta:
# recv dtype
dtype
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
dtype
,
src
=
0
,
group
=
group
)
return
shape
.
numpy
().
tolist
(),
dtype
.
item
()
# recv stop_gradient
stop_grad
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
stop_grad
,
src
=
0
,
group
=
group
)
return
shape
.
numpy
().
tolist
(),
dtype
.
item
(),
stop_grad
.
item
()
def
recv_meta
(
self
,
group
):
tensor_type
=
paddle
.
to_tensor
([
0
])
...
...
@@ -65,9 +72,10 @@ class SendRecvMeta:
tensor_type
=
tensor_type
.
item
()
if
tensor_type
==
0
:
shape
,
dtype
=
self
.
_recv_shape_dtype
(
group
)
shape
,
dtype
,
stop_grad
=
self
.
_recv_shape_dtype
(
group
)
self
.
recv_shape_message
=
shape
self
.
recv_dtype_message
=
dtype
self
.
recv_stop_gradient
=
bool
(
stop_grad
)
elif
tensor_type
==
1
:
num
=
paddle
.
to_tensor
([
0
])
...
...
@@ -75,13 +83,16 @@ class SendRecvMeta:
num
=
num
.
item
()
shapes
=
[]
dtypes
=
[]
stop_grads
=
[]
for
i
in
range
(
num
):
shape
,
dtype
=
self
.
_recv_shape_dtype
(
group
)
shape
,
dtype
,
stop_grad
=
self
.
_recv_shape_dtype
(
group
)
shapes
.
append
(
shape
)
dtypes
.
append
(
dtype
)
stop_grads
.
append
(
bool
(
stop_grad
))
self
.
recv_shape_message
=
tuple
(
shapes
)
self
.
recv_dtype_message
=
tuple
(
dtypes
)
self
.
recv_stop_gradient
=
tuple
(
stop_grads
)
def
_send_dims_shape_dtype
(
self
,
tensor
,
group
):
# send len(shape)
...
...
@@ -96,6 +107,10 @@ class SendRecvMeta:
dtype
=
paddle
.
to_tensor
(
paddle_2_number
(
tensor
.
dtype
))
paddle
.
distributed
.
send
(
dtype
,
dst
=
1
,
group
=
group
)
# send trainable
stop_grad
=
paddle
.
to_tensor
(
int
(
tensor
.
stop_gradient
))
paddle
.
distributed
.
send
(
stop_grad
,
dst
=
1
,
group
=
group
)
def
send_meta
(
self
,
tensor
,
group
):
if
isinstance
(
tensor
,
paddle
.
Tensor
):
tensor_type
=
paddle
.
to_tensor
([
0
])
...
...
@@ -129,6 +144,12 @@ class SendRecvMeta:
_send_recv_meta
=
SendRecvMeta
()
def
_is_valid_send_recv_partial
(
tensor
,
mp_degree
):
tensor_numel
=
np
.
prod
(
tensor
.
shape
)
assert
tensor_numel
!=
0
,
"can't send/recv zero element"
return
mp_degree
>
1
and
tensor_numel
%
mp_degree
==
0
def
send_partial
(
tensor
,
dst
=
0
,
nranks
=
1
,
...
...
@@ -138,9 +159,14 @@ def send_partial(tensor,
if
group
is
not
None
and
not
group
.
is_member
():
return
ring_id
=
0
if
group
is
None
else
group
.
id
return
paddle
.
fluid
.
core
.
ops
.
partial_send
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
dst
,
'num'
,
nranks
,
'id'
,
rank_id
)
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
return
_C_ops
.
partial_send
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
dst
,
'num'
,
nranks
,
'id'
,
rank_id
)
else
:
return
paddle
.
distributed
.
send
(
tensor
,
dst
=
dst
,
group
=
group
,
use_calc_stream
=
use_calc_stream
)
def
recv_partial
(
tensor
,
...
...
@@ -153,10 +179,14 @@ def recv_partial(tensor,
return
ring_id
=
0
if
group
is
None
else
group
.
id
paddle
.
fluid
.
core
.
ops
.
partial_recv
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
src
,
'num'
,
nranks
,
'id'
,
rank_id
,
'dtype'
,
tensor
.
dtype
,
'out_shape'
,
tensor
.
shape
)
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
_C_ops
.
partial_recv
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
src
,
'num'
,
nranks
,
'id'
,
rank_id
,
'dtype'
,
tensor
.
dtype
,
'out_shape'
,
tensor
.
shape
)
else
:
paddle
.
distributed
.
recv
(
tensor
,
src
=
src
,
group
=
group
,
use_calc_stream
=
use_calc_stream
)
def
allgather_partial
(
tensor
,
...
...
@@ -164,15 +194,15 @@ def allgather_partial(tensor,
rank_id
=
0
,
group
=
None
,
use_calc_stream
=
True
):
if
n
ranks
==
1
:
if
n
ot
_is_valid_send_recv_partial
(
tensor
,
nranks
)
:
return
tensor
if
group
is
not
None
and
not
group
.
is_member
():
return
ring_id
=
0
if
group
is
None
else
group
.
id
return
paddle
.
fluid
.
core
.
ops
.
partial_allgather_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'nranks'
,
nranks
,
'rank'
,
rank_id
)
return
_C_ops
.
partial_allgather_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'nranks'
,
nranks
,
'rank'
,
rank_id
)
def
_p2p_helper
(
tensor_send_next
,
tensor_send_prev
,
recv_prev
,
recv_next
):
...
...
@@ -184,6 +214,8 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
# send / recv message
recv_shape_msg
=
_send_recv_meta
.
recv_shape_message
recv_dtype_msg
=
_send_recv_meta
.
recv_dtype_message
recv_stop_gradient
=
_send_recv_meta
.
recv_stop_gradient
send_shape_msg
=
_send_recv_meta
.
send_shape_message
send_dtype_msg
=
_send_recv_meta
.
send_dtype_message
...
...
@@ -196,13 +228,16 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
if
isinstance
(
recv_shape_msg
,
tuple
):
tensor_recv_prev
=
[]
for
idx
,
shape
in
enumerate
(
recv_shape_msg
):
tensor_recv_prev
.
append
(
paddle
.
empty
(
shape
=
shape
,
dtype
=
number_2_dtype
(
recv_dtype_msg
[
idx
])))
tmp
=
paddle
.
empty
(
shape
=
shape
,
dtype
=
number_2_dtype
(
recv_dtype_msg
[
idx
]))
tmp
.
stop_gradient
=
recv_stop_gradient
[
idx
]
tensor_recv_prev
.
append
(
tmp
)
tensor_recv_prev
=
tuple
(
tensor_recv_prev
)
else
:
tensor_recv_prev
=
paddle
.
empty
(
shape
=
recv_shape_msg
,
dtype
=
number_2_dtype
(
recv_dtype_msg
))
tensor_recv_prev
.
stop_gradient
=
recv_stop_gradient
if
recv_next
:
if
isinstance
(
send_shape_msg
,
tuple
):
...
...
@@ -222,7 +257,7 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
for
d
in
tensor_send_prev
:
paddle
.
distributed
.
wait
(
d
,
use_calc_stream
=
True
)
send_partial
(
d
,
d
.
detach
()
,
dst
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
...
...
@@ -231,7 +266,7 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
else
:
paddle
.
distributed
.
wait
(
tensor_send_prev
,
use_calc_stream
=
True
)
send_partial
(
tensor_send_prev
,
tensor_send_prev
.
detach
()
,
dst
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
...
...
@@ -242,28 +277,28 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
if
isinstance
(
tensor_recv_prev
,
tuple
):
for
d
in
tensor_recv_prev
:
recv_partial
(
d
,
d
.
detach
()
,
src
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_prev_group
,
use_calc_stream
=
True
)
allgather_partial
(
d
,
d
.
detach
()
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
use_calc_stream
=
True
)
else
:
recv_partial
(
tensor_recv_prev
,
tensor_recv_prev
.
detach
()
,
src
=
0
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_prev_group
,
use_calc_stream
=
True
)
allgather_partial
(
tensor_recv_prev
,
tensor_recv_prev
.
detach
()
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
...
...
@@ -274,7 +309,7 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
for
d
in
tensor_send_next
:
paddle
.
distributed
.
wait
(
d
,
use_calc_stream
=
True
)
send_partial
(
d
,
d
.
detach
()
,
dst
=
1
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
...
...
@@ -283,7 +318,7 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
else
:
paddle
.
distributed
.
wait
(
tensor_send_next
,
use_calc_stream
=
True
)
send_partial
(
tensor_send_next
,
tensor_send_next
.
detach
()
,
dst
=
1
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
...
...
@@ -294,14 +329,14 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
if
isinstance
(
tensor_recv_next
,
tuple
):
for
d
in
tensor_recv_next
:
recv_partial
(
d
,
d
.
detach
()
,
src
=
1
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
_hcg
.
recv_next_group
,
use_calc_stream
=
True
)
allgather_partial
(
d
,
d
.
detach
()
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
...
...
@@ -309,7 +344,7 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
else
:
recv_partial
(
tensor_recv_next
,
tensor_recv_next
.
detach
()
,
src
=
1
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
...
...
@@ -317,7 +352,7 @@ def _p2p_helper(tensor_send_next, tensor_send_prev, recv_prev, recv_next):
use_calc_stream
=
True
)
allgather_partial
(
tensor_recv_next
,
tensor_recv_next
.
detach
()
,
nranks
=
mp_degree
,
rank_id
=
mp_rank
,
group
=
mp_group
,
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_transformer.py
浏览文件 @
4cc3d9a2
...
...
@@ -54,13 +54,17 @@ class EmbeddingNet(Layer):
attention_mask
=
paddle
.
tensor
.
triu
(
(
paddle
.
ones
(
(
length
,
length
),
dtype
=
"float32"
)
*
-
1e9
),
1
)
attention_mask
.
stop_gradient
=
True
no_used
=
paddle
.
ones
((
3
,
3
),
dtype
=
"int32"
)
w_emb
=
self
.
word_embeddings
(
x
)
p_emb
=
self
.
position_embeddings
(
x
)
w_emb
=
w_emb
+
p_emb
attention_mask
.
stop_gradient
=
True
no_used
.
stop_gradient
=
True
# need to fix bug of backward()
return
w_emb
,
attention_mask
return
w_emb
,
attention_mask
,
no_used
,
p_emb
class
TransformerNet
(
Layer
):
...
...
@@ -99,12 +103,12 @@ class EmbeddingPipe(EmbeddingNet):
class
TransformerNetPipe
(
TransformerNet
):
def
forward
(
self
,
args
):
x
,
mask
=
args
[
0
],
args
[
1
]
x
,
mask
,
no_used
,
p_emb
=
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
]
output
=
super
().
forward
(
x
,
mask
)
output
=
output
output
=
output
+
p_emb
mask
.
stop_gradient
=
True
return
output
,
mask
return
output
,
mask
,
no_used
,
p_emb
class
CriterionPipe
(
Layer
):
...
...
@@ -175,6 +179,8 @@ class TestDistPPTraning(unittest.TestCase):
loss
=
model
.
train_batch
([
x
,
x
],
optimizer
,
scheduler
)
# TODO(shenliang03) add utest for loss
print
(
"loss: "
,
loss
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录