Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4c73240d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4c73240d
编写于
5月 17, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments.
上级
32f7176d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
83 addition
and
51 deletion
+83
-51
demo/semantic_role_labeling/api_train_v2.py
demo/semantic_role_labeling/api_train_v2.py
+83
-51
未找到文件。
demo/semantic_role_labeling/api_train_v2.py
浏览文件 @
4c73240d
...
@@ -6,6 +6,8 @@ import paddle.v2.dataset.conll05 as conll05
...
@@ -6,6 +6,8 @@ import paddle.v2.dataset.conll05 as conll05
import
paddle.v2.evaluator
as
evaluator
import
paddle.v2.evaluator
as
evaluator
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
logger
=
logging
.
getLogger
(
'paddle'
)
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
label_dict_len
=
len
(
label_dict
)
...
@@ -120,19 +122,7 @@ def load_parameter(file_name, h, w):
...
@@ -120,19 +122,7 @@ def load_parameter(file_name, h, w):
return
np
.
fromfile
(
f
,
dtype
=
np
.
float32
).
reshape
(
h
,
w
)
return
np
.
fromfile
(
f
,
dtype
=
np
.
float32
).
reshape
(
h
,
w
)
def
test_a_batch
(
inferer
,
test_data
,
tag_dict
):
def
train
():
probs
=
inferer
.
infer
(
input
=
test_data
,
field
=
'id'
)
assert
len
(
probs
)
==
sum
(
len
(
x
[
0
])
for
x
in
test_data
)
for
test_sample
in
test_data
:
start_id
=
0
pre_lab
=
[
tag_dict
[
probs
[
start_id
+
i
]]
for
i
in
xrange
(
len
(
test_sample
[
0
]))
]
print
pre_lab
start_id
+=
len
(
test_sample
[
0
])
def
main
(
is_predict
=
False
):
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# define network topology
# define network topology
...
@@ -189,12 +179,12 @@ def main(is_predict=False):
...
@@ -189,12 +179,12 @@ def main(is_predict=False):
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
logger
.
info
(
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
)
if
event
.
batch_id
%
1000
==
0
:
if
event
.
batch_id
and
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, Batch %d, %s"
%
(
logger
.
info
(
"
\n
Test with Pass %d, Batch %d, %s"
%
event
.
pass_id
,
event
.
batch_id
,
result
.
metrics
)
(
event
.
pass_id
,
event
.
batch_id
,
result
.
metrics
)
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
# save parameters
...
@@ -202,44 +192,86 @@ def main(is_predict=False):
...
@@ -202,44 +192,86 @@ def main(is_predict=False):
parameters
.
to_tar
(
f
)
parameters
.
to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
logger
.
info
(
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
))
if
not
is_predict
:
trainer
.
train
(
trainer
.
train
(
reader
=
reader
,
reader
=
reader
,
event_handler
=
event_handler
,
event_handler
=
event_handler
,
num_passes
=
10
,
num_passes
=
10
,
feeding
=
feeding
)
feeding
=
feeding
)
else
:
labels_reverse
=
{}
for
(
k
,
v
)
in
label_dict
.
items
():
labels_reverse
[
v
]
=
k
test_creator
=
paddle
.
dataset
.
conll05
.
test
()
predict
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
feature_out
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
test_pass
=
0
def
infer_a_batch
(
inferer
,
test_data
,
word_dict
,
pred_dict
,
label_dict
):
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
(
test_pass
))
as
f
:
probs
=
inferer
.
infer
(
input
=
test_data
,
field
=
'id'
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
assert
len
(
probs
)
==
sum
(
len
(
x
[
0
])
for
x
in
test_data
)
inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
predict
,
parameters
=
parameters
)
# prepare test data
for
idx
,
test_sample
in
enumerate
(
test_data
):
test_data
=
[]
start_id
=
0
test_batch_size
=
50
pred_str
=
"%s
\t
"
%
(
pred_dict
[
test_sample
[
6
][
0
]])
for
idx
,
item
in
enumerate
(
test_creator
()):
for
w
,
tag
in
zip
(
test_sample
[
0
],
test_data
.
append
(
item
[
0
:
8
])
probs
[
start_id
:
start_id
+
len
(
test_sample
[
0
])]):
pred_str
+=
"%s[%s] "
%
(
word_dict
[
w
],
label_dict
[
tag
])
print
(
pred_str
.
strip
())
start_id
+=
len
(
test_sample
[
0
])
if
idx
and
(
not
idx
%
test_batch_size
):
test_a_batch
(
inferer
,
test_data
,
labels_reverse
)
def
infer
():
test_data
=
[]
label_dict_reverse
=
dict
((
value
,
key
)
test_a_batch
(
inferer
,
test_data
,
labels_reverse
)
for
key
,
value
in
label_dict
.
iteritems
())
test_data
=
[]
word_dict_reverse
=
dict
((
value
,
key
)
for
key
,
value
in
word_dict
.
iteritems
())
pred_dict_reverse
=
dict
((
value
,
key
)
for
key
,
value
in
verb_dict
.
iteritems
())
test_creator
=
paddle
.
dataset
.
conll05
.
test
()
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# define network topology
feature_out
=
db_lstm
()
predict
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
feature_out
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
test_pass
=
0
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
(
test_pass
))
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
predict
,
parameters
=
parameters
)
# prepare test data
test_data
=
[]
test_batch_size
=
50
for
idx
,
item
in
enumerate
(
test_creator
()):
test_data
.
append
(
item
[
0
:
8
])
if
idx
and
(
not
idx
%
test_batch_size
):
infer_a_batch
(
inferer
,
test_data
,
word_dict_reverse
,
pred_dict_reverse
,
label_dict_reverse
,
)
test_data
=
[]
infer_a_batch
(
inferer
,
test_data
,
word_dict_reverse
,
pred_dict_reverse
,
label_dict_reverse
,
)
test_data
=
[]
def
main
(
is_inferring
=
False
):
if
is_inferring
:
infer
()
else
:
train
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
(
is_
predict
=
False
)
main
(
is_
inferring
=
False
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录