Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4c438d30
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4c438d30
编写于
9月 26, 2022
作者:
J
Jiabin Yang
提交者:
GitHub
9月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support rsqrt_p (#46369)
* support rsqrt_p * refine code and ut * add_prim_rsqrt * fix ut
上级
9a291685
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
204 addition
and
7 deletion
+204
-7
paddle/fluid/operators/prim_ops/CMakeLists.txt
paddle/fluid/operators/prim_ops/CMakeLists.txt
+2
-1
paddle/fluid/operators/prim_ops/rsqrt_p_op.cc
paddle/fluid/operators/prim_ops/rsqrt_p_op.cc
+82
-0
python/paddle/fluid/tests/unittests/autograd/test_jvp_and_transpose.py
.../fluid/tests/unittests/autograd/test_jvp_and_transpose.py
+33
-0
python/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
...n/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
+21
-0
python/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
...n/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
+20
-0
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
+2
-0
python/paddle/fluid/tests/unittests/autograd/test_transform.py
...n/paddle/fluid/tests/unittests/autograd/test_transform.py
+17
-5
python/paddle/incubate/autograd/primops.py
python/paddle/incubate/autograd/primops.py
+5
-0
python/paddle/incubate/autograd/primrules.py
python/paddle/incubate/autograd/primrules.py
+22
-1
未找到文件。
paddle/fluid/operators/prim_ops/CMakeLists.txt
浏览文件 @
4c438d30
...
@@ -37,7 +37,8 @@ set(PRIM_OP_SRCS
...
@@ -37,7 +37,8 @@ set(PRIM_OP_SRCS
max_p_op.cc
max_p_op.cc
erf_p_op.cc
erf_p_op.cc
abs_p_op.cc
abs_p_op.cc
cast_p_op.cc
)
cast_p_op.cc
rsqrt_p_op.cc
)
cc_test
(
cc_test
(
prim_op_test
prim_op_test
...
...
paddle/fluid/operators/prim_ops/rsqrt_p_op.cc
0 → 100644
浏览文件 @
4c438d30
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
framework
{
class
InferShapeContext
;
class
VarDesc
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
operators
{
class
RsqrtPrimOp
:
public
framework
::
OperatorBase
{
public:
RsqrtPrimOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Prim operator rsqrt_p should not be excuted directly"
));
}
};
class
RsqrtPrimOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), The input tensor of rsqrt_p op."
);
AddOutput
(
"Y"
,
"(Tensor), The output tensor of rsqrt_p op."
);
AddComment
(
R"DOC(
Autograd primitive rsqrt_p operator.
)DOC"
);
}
};
class
RsqrtPrimOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
framework
::
InferShapeVarPtr
x_var_ptr
=
ctx
->
GetInputVarPtrs
(
"X"
)[
0
];
framework
::
InferShapeVarPtr
y_var_ptr
=
ctx
->
GetOutputVarPtrs
(
"Y"
)[
0
];
framework
::
VarDesc
*
x_var
=
PADDLE_GET
(
framework
::
VarDesc
*
,
x_var_ptr
);
PADDLE_GET
(
framework
::
VarDesc
*
,
y_var_ptr
)
->
SetShape
(
x_var
->
GetShape
());
}
};
class
RsqrtPrimOpVarTypeInference
:
public
framework
::
StaticGraphVarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
x_name
=
Input
(
ctx
,
"X"
)[
0
];
auto
y_name
=
Output
(
ctx
,
"Y"
)[
0
];
SetType
(
ctx
,
y_name
,
GetType
(
ctx
,
x_name
));
SetDataType
(
ctx
,
y_name
,
GetDataType
(
ctx
,
x_name
));
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
rsqrt_p
,
paddle
::
operators
::
RsqrtPrimOp
,
paddle
::
operators
::
RsqrtPrimOpMaker
,
paddle
::
operators
::
RsqrtPrimOpShapeInference
,
paddle
::
operators
::
RsqrtPrimOpVarTypeInference
);
python/paddle/fluid/tests/unittests/autograd/test_jvp_and_transpose.py
浏览文件 @
4c438d30
...
@@ -241,6 +241,39 @@ class TestSqrtPJVPAndTranspose(TestAddPJVPAndTranspose):
...
@@ -241,6 +241,39 @@ class TestSqrtPJVPAndTranspose(TestAddPJVPAndTranspose):
]
]
class
TestRSqrtPJVPAndTranspose
(
TestAddPJVPAndTranspose
):
def
init_data
(
self
):
# Set prim op
self
.
op_type
=
'rsqrt_p'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
5
,
6
],
dtype
=
'int64'
)
self
.
prim_input
=
{
'X'
:
X
,
}
self
.
prim_output
=
{
'Y'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
prim_attrs
=
{}
# Set JVP
X_DOT
=
paddle
.
static
.
data
(
name
=
'X_DOT'
,
shape
=
[
5
,
6
],
dtype
=
'int64'
)
self
.
jvp_args
=
(
X_DOT
,
)
self
.
jvp_out_shape_map
=
{
0
:
self
.
prim_output
[
'Y'
]}
self
.
all_ops
=
[
# prim op:
'rsqrt_p'
,
# jvp op:
'div_p'
,
'div_p'
,
'mul_p'
,
'fill_constant_p'
,
# 'sqrt_p',
# transpose op:
]
class
TestTanhPJVPAndTranspose
(
TestAddPJVPAndTranspose
):
class
TestTanhPJVPAndTranspose
(
TestAddPJVPAndTranspose
):
def
init_data
(
self
):
def
init_data
(
self
):
...
...
python/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
浏览文件 @
4c438d30
...
@@ -879,5 +879,26 @@ class TestSquareOrig2Prim(TestElementWiseAddOrig2Prim):
...
@@ -879,5 +879,26 @@ class TestSquareOrig2Prim(TestElementWiseAddOrig2Prim):
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
class
TestRSqrtOrig2Prim
(
TestElementWiseAddOrig2Prim
):
def
init_data
(
self
):
self
.
op_type
=
'rsqrt'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
7
,
8
],
dtype
=
'float64'
)
self
.
input
=
{
'X'
:
X
,
}
self
.
output
=
{
'Out'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
attrs
=
{}
self
.
orig2prim_args
=
(
X
,
)
self
.
all_ops
=
[
'rsqrt'
,
'rsqrt_p'
]
# { prim_op_output_index: orig_op_output_var }
self
.
out_map
=
{
0
:
self
.
output
[
'Out'
]}
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
浏览文件 @
4c438d30
...
@@ -690,5 +690,25 @@ class TestCastPPrim2Orig(TestAddPPrim2Orig):
...
@@ -690,5 +690,25 @@ class TestCastPPrim2Orig(TestAddPPrim2Orig):
self
.
out_map
=
{
self
.
output
[
'Y'
]:
0
}
self
.
out_map
=
{
self
.
output
[
'Y'
]:
0
}
class
TestRsqrtPrim2Orig
(
TestAddPPrim2Orig
):
def
init_data
(
self
):
self
.
op_type
=
'rsqrt_p'
X
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
7
,
8
],
dtype
=
'float64'
)
self
.
input
=
{
'X'
:
X
,
}
self
.
output
=
{
'Y'
:
self
.
layer_help
.
create_variable_for_type_inference
(
dtype
=
X
.
dtype
)
}
self
.
attrs
=
{}
self
.
prim2orig_args
=
(
X
,
)
self
.
all_ops
=
[
'rsqrt_p'
,
'rsqrt'
]
self
.
out_map
=
{
self
.
output
[
'Y'
]:
0
}
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/autograd/test_primapi.py
浏览文件 @
4c438d30
...
@@ -152,6 +152,7 @@ class TestWithoutProgramGuard(unittest.TestCase):
...
@@ -152,6 +152,7 @@ class TestWithoutProgramGuard(unittest.TestCase):
(
'log'
,
paddle
.
log
,
(
np
.
random
.
rand
(
3
,
4
),
),
None
,
'float32'
),
(
'log'
,
paddle
.
log
,
(
np
.
random
.
rand
(
3
,
4
),
),
None
,
'float32'
),
(
'abs'
,
paddle
.
abs
,
(
np
.
random
.
uniform
(
-
10
,
10
,
(
'abs'
,
paddle
.
abs
,
(
np
.
random
.
uniform
(
-
10
,
10
,
(
10
,
10
)),
),
None
,
'float32'
),
(
10
,
10
)),
),
None
,
'float32'
),
(
'rsqrt'
,
paddle
.
rsqrt
,
(
np
.
random
.
rand
(
100
,
200
),
),
None
,
'float32'
),
))
))
# paddle.where, paddle.pow, paddle.maximum has no double grad definition,
# paddle.where, paddle.pow, paddle.maximum has no double grad definition,
# can not compute forward grad use double trick
# can not compute forward grad use double trick
...
@@ -267,6 +268,7 @@ where_wrap = lambda x, y: paddle.where(paddle.eye(3, 4) == 1, x, y)
...
@@ -267,6 +268,7 @@ where_wrap = lambda x, y: paddle.where(paddle.eye(3, 4) == 1, x, y)
(
np
.
random
.
rand
(
3
,
3
),
np
.
random
.
rand
(
3
,
3
)),
(
np
.
random
.
rand
(
3
,
3
),
np
.
random
.
rand
(
3
,
3
)),
(
np
.
random
.
rand
(
3
,
3
),
),
'float64'
),
(
np
.
random
.
rand
(
3
,
3
),
),
'float64'
),
(
'sin'
,
paddle
.
sin
,
(
np
.
random
.
rand
(
100
,
200
),
),
None
,
'float32'
),
(
'sin'
,
paddle
.
sin
,
(
np
.
random
.
rand
(
100
,
200
),
),
None
,
'float32'
),
(
'rsqrt'
,
paddle
.
rsqrt
,
(
np
.
random
.
rand
(
100
,
200
),
),
None
,
'float32'
),
(
'cos'
,
paddle
.
cos
,
(
np
.
random
.
rand
(
200
,
90
),
),
None
,
'float32'
),
(
'cos'
,
paddle
.
cos
,
(
np
.
random
.
rand
(
200
,
90
),
),
None
,
'float32'
),
(
'exp'
,
paddle
.
exp
,
(
np
.
random
.
rand
(
299
,
320
),
),
None
,
'float32'
),
(
'exp'
,
paddle
.
exp
,
(
np
.
random
.
rand
(
299
,
320
),
),
None
,
'float32'
),
# In where op, grad of condition computed by paddle.static.gradients is None,
# In where op, grad of condition computed by paddle.static.gradients is None,
...
...
python/paddle/fluid/tests/unittests/autograd/test_transform.py
浏览文件 @
4c438d30
...
@@ -48,15 +48,16 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
...
@@ -48,15 +48,16 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
A
=
paddle
.
tanh
(
X0
)
A
=
paddle
.
tanh
(
X0
)
B
=
paddle
.
tanh
(
X1
)
B
=
paddle
.
tanh
(
X1
)
Y
=
paddle
.
add
(
A
,
B
)
C
=
paddle
.
rsqrt
(
B
)
Y
=
paddle
.
add
(
A
,
C
)
self
.
orig_xs
=
[
X0
,
X1
]
self
.
orig_xs
=
[
X0
,
X1
]
self
.
orig_ys
=
[
self
.
orig_ys
=
[
Y
,
Y
,
]
]
self
.
orig_ops
=
[
'tanh'
,
'tanh'
,
'elementwise_add'
]
self
.
orig_ops
=
[
'tanh'
,
'tanh'
,
'elementwise_add'
,
'rsqrt'
]
self
.
orig2prim_ops
=
[
'tanh_p'
,
'tanh_p'
,
'add_p'
]
self
.
orig2prim_ops
=
[
'tanh_p'
,
'tanh_p'
,
'add_p'
,
'rsqrt_p'
]
self
.
linearize_ops
=
self
.
orig2prim_ops
+
[
self
.
linearize_ops
=
self
.
orig2prim_ops
+
[
# call fill_const() in linearize() function
# call fill_const() in linearize() function
'fill_constant_p'
,
'fill_constant_p'
,
...
@@ -71,6 +72,10 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
...
@@ -71,6 +72,10 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
'fill_constant_p'
,
'fill_constant_p'
,
'mul_p'
,
'mul_p'
,
'add_p'
,
'add_p'
,
'fill_constant_p'
,
'div_p'
,
'div_p'
,
'mul_p'
,
]
]
self
.
transpose_ops
=
self
.
orig2prim_ops
+
[
self
.
transpose_ops
=
self
.
orig2prim_ops
+
[
# call fill_const() in transpose() function
# call fill_const() in transpose() function
...
@@ -84,6 +89,10 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
...
@@ -84,6 +89,10 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
'mul_p'
,
'mul_p'
,
'sub_p'
,
'sub_p'
,
'fill_constant_p'
,
'fill_constant_p'
,
'mul_p'
,
'div_p'
,
'div_p'
,
'fill_constant_p'
,
# transposed op
# transposed op
'mul_p'
,
'mul_p'
,
'mul_p'
'mul_p'
...
@@ -92,13 +101,16 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
...
@@ -92,13 +101,16 @@ class TestAutoGradTransformForAdd(unittest.TestCase):
'tanh'
,
'tanh'
,
'add_p'
,
'fill_constant'
,
'fill_constant'
,
'tanh'
,
'tanh'
,
'add_p'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'elementwise_mul'
,
'sub_p'
,
'fill_constant'
,
'fill_constant'
,
'elementwise_mul'
,
'sub_p'
,
'fill_constant'
,
'elementwise_mul'
,
'sub_p'
,
'fill_constant'
,
'elementwise_mul'
,
'elementwise_mul'
,
'sub_p'
,
'fill_constant'
,
'elementwise_mul'
,
'elementwise_mul'
'elementwise_mul'
,
'rsqrt'
,
'fill_constant'
,
'elementwise_div'
,
'elementwise_div'
,
'elementwise_mul'
]
]
self
.
prim2orig_ops
=
[
self
.
prim2orig_ops
=
[
'tanh'
,
'tanh'
,
'elementwise_add'
,
'fill_constant'
,
'fill_constant'
,
'tanh'
,
'tanh'
,
'elementwise_add'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'elementwise_mul'
,
'elementwise_sub'
,
'fill_constant'
,
'elementwise_mul'
,
'elementwise_sub'
,
'fill_constant'
,
'elementwise_mul'
,
'elementwise_sub'
,
'fill_constant'
,
'elementwise_mul'
,
'elementwise_sub'
,
'fill_constant'
,
'elementwise_mul'
,
'elementwise_mul'
'fill_constant'
,
'elementwise_mul'
,
'elementwise_mul'
,
'rsqrt'
,
'fill_constant'
,
'elementwise_div'
,
'elementwise_div'
,
'elementwise_mul'
]
]
def
test_run
(
self
):
def
test_run
(
self
):
...
...
python/paddle/incubate/autograd/primops.py
浏览文件 @
4c438d30
...
@@ -394,3 +394,8 @@ def cast(x, dtype, out=None):
...
@@ -394,3 +394,8 @@ def cast(x, dtype, out=None):
outputs
=
{
'Y'
:
out
},
outputs
=
{
'Y'
:
out
},
attrs
=
{
'dtype'
:
dtype
})
attrs
=
{
'dtype'
:
dtype
})
return
out
return
out
@
REGISTER_FN
(
'rsqrt_p'
,
'X'
,
'Y'
)
def
rsqrt
(
x
,
out
=
None
):
return
_simple_unop
(
LayerHelper
(
'rsqrt_p'
,
**
locals
()))
python/paddle/incubate/autograd/primrules.py
浏览文件 @
4c438d30
...
@@ -23,7 +23,7 @@ from .primops import (add, broadcast, concat, cos, div, eq, erf, exp,
...
@@ -23,7 +23,7 @@ from .primops import (add, broadcast, concat, cos, div, eq, erf, exp,
fill_const
,
gather
,
ge
,
gt
,
log
,
matmul
,
max
,
mul
,
ne
,
fill_const
,
gather
,
ge
,
gt
,
log
,
matmul
,
max
,
mul
,
ne
,
neg
,
reduce_sum
,
reshape
,
scatter_add
,
select
,
set_value
,
neg
,
reduce_sum
,
reshape
,
scatter_add
,
select
,
set_value
,
sin
,
slice_assign
,
slice_select
,
split
,
sqrt
,
sub
,
tanh
,
sin
,
slice_assign
,
slice_select
,
split
,
sqrt
,
sub
,
tanh
,
transpose
)
transpose
,
rsqrt
)
from
.primreg
import
(
REGISTER_JVP
,
REGISTER_ORIG2PRIM
,
REGISTER_PRIM2ORIG
,
from
.primreg
import
(
REGISTER_JVP
,
REGISTER_ORIG2PRIM
,
REGISTER_PRIM2ORIG
,
REGISTER_TRANSPOSE
,
lookup_fn
,
lookup_jvp
,
REGISTER_TRANSPOSE
,
lookup_fn
,
lookup_jvp
,
lookup_orig2prim
,
lookup_prim2orig
,
lookup_transpose
,
lookup_orig2prim
,
lookup_prim2orig
,
lookup_transpose
,
...
@@ -252,6 +252,11 @@ def sqrt_orig2prim(op, x):
...
@@ -252,6 +252,11 @@ def sqrt_orig2prim(op, x):
return
sqrt
(
x
)
return
sqrt
(
x
)
@
REGISTER_ORIG2PRIM
(
'rsqrt'
)
def
rsqrt_orig2prim
(
op
,
x
):
return
rsqrt
(
x
)
@
REGISTER_ORIG2PRIM
(
'matmul_v2'
)
@
REGISTER_ORIG2PRIM
(
'matmul_v2'
)
def
matmul_v2_orig2prim
(
op
,
x
,
y
):
def
matmul_v2_orig2prim
(
op
,
x
,
y
):
...
@@ -456,6 +461,11 @@ def sub_prim2orig(op, x, y):
...
@@ -456,6 +461,11 @@ def sub_prim2orig(op, x, y):
return
paddle
.
subtract
(
x
,
y
)
return
paddle
.
subtract
(
x
,
y
)
@
REGISTER_PRIM2ORIG
(
'rsqrt_p'
)
def
rsqrt_prim2orig
(
op
,
x
):
return
paddle
.
rsqrt
(
x
)
@
REGISTER_PRIM2ORIG
(
'mul_p'
)
@
REGISTER_PRIM2ORIG
(
'mul_p'
)
def
mul_prim2orig
(
op
,
x
,
y
):
def
mul_prim2orig
(
op
,
x
,
y
):
return
paddle
.
multiply
(
x
,
y
)
return
paddle
.
multiply
(
x
,
y
)
...
@@ -969,6 +979,17 @@ def cast_jvp(op, x_dot):
...
@@ -969,6 +979,17 @@ def cast_jvp(op, x_dot):
return
primops
.
cast
(
x_dot
,
y
.
dtype
)
return
primops
.
cast
(
x_dot
,
y
.
dtype
)
@
REGISTER_JVP
(
'rsqrt_p'
)
def
rsqrt_jvp
(
op
,
x_dot
):
if
x_dot
is
None
:
return
None
y
=
op_position_output
(
op
)
x
=
op_position_inputs
(
op
)
c2
=
fill_const
(
value
=-
2.0
,
shape
=
y
.
shape
,
dtype
=
y
.
dtype
)
y_dot
=
mul
(
x_dot
,
div
(
div
(
y
,
x
),
c2
))
return
y_dot
## Register transpose rules
## Register transpose rules
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录