Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4c134c7c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4c134c7c
编写于
7月 14, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add comments.
上级
30725a07
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
36 addition
and
10 deletion
+36
-10
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
+32
-6
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+2
-2
python/paddle/trainer_config_helpers/networks.py
python/paddle/trainer_config_helpers/networks.py
+2
-2
未找到文件。
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
浏览文件 @
4c134c7c
...
...
@@ -190,7 +190,7 @@ public:
std
::
vector
<
int
>
ids
;
/**
* @brief idsProb, log probability of each generated word
s
.
* @brief idsProb, log probability of each generated word.
*/
std
::
vector
<
real
>
idsProb
;
...
...
@@ -472,16 +472,42 @@ private:
void
copyDataOutlinkFrame
(
size_t
machineCur
);
/*
* @brief In generation, if the layer group has more than 1 outlink, outlinks
* except the first one are data outlinks. This function creates the data
* outlinks.
* @note In beam search, only one generated sequence with the hightest log
* probabilites are retained.
* @brief In generation, if the layer group has more than 1 outlink, outlink
* except the first one is a data outlink. In RecurrentLayerGroup, each time
* step is a separate Network, outputs of a layer inside the
* RecurrentLayerGroup are stored in separate Arguments. If one layer is
* specified as an outlink of RecurrentLayerGroup. This function will
* collect outputs in each time step of each generated sequence which are
* dispersed in separate Arguments to form a new single Argument as output of
* RecurrentLayerGroup.
*/
void
createDataOutlink
();
/*
* @brief decide to select how many rows from the Matrix stored the forward
* pass results from a start position.
*
* @param isSeq: a flag indicating whetehr the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the the returned Arguments of the forward pass
* during the generation process.
* @param copySize: the returned result, number of rows to select from the
* Matrix stored the forward pass results from a start position.
*/
void
createDataOutlinkCopySizeInfo
(
bool
isSeq
,
std
::
vector
<
Argument
>&
outArgs
,
std
::
vector
<
int
>&
copySize
);
/*
* @brief decide index of the start row for each time step of a generated
* sequence in Matrix stored the entire beam search batch's forward pass
* results.
*
* @param isSeq: a flag indicating whetehr the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the the returned Arguments of the forward pass
* during the generation process.
*/
void
createDataOutlinkSelRowsInfo
(
bool
isSeq
,
std
::
vector
<
Argument
>&
outArgs
);
/*
...
...
paddle/parameter/Argument.cpp
浏览文件 @
4c134c7c
...
...
@@ -352,8 +352,8 @@ void Argument::concat(const std::vector<Argument>& args,
CHECK_GE
(
args
.
size
(),
static_cast
<
size_t
>
(
endPos
-
startPos
));
for
(
int
j
=
startPos
;
j
<
endPos
;
++
j
)
{
const
Argument
&
arg
=
args
[
j
-
startPos
];
CHECK_EQ
(
arg
.
dataId
,
dataId
)
<<
"Arguments
in concat should have th
e "
<<
"
same dataId
"
;
CHECK_EQ
(
arg
.
dataId
,
dataId
)
<<
"Arguments
to concatenate should hav
e "
<<
"
the same dataId.
"
;
const
int
srcStartRow
=
selectRows
[
j
];
copyArg
(
in
,
arg
.
in
,
desStartRow
,
srcStartRow
,
copySize
[
i
],
useGpu
);
copyArg
(
value
,
arg
.
value
,
desStartRow
,
srcStartRow
,
copySize
[
i
],
useGpu
);
...
...
python/paddle/trainer_config_helpers/networks.py
浏览文件 @
4c134c7c
...
...
@@ -1375,9 +1375,9 @@ def simple_attention(encoded_sequence,
weight
=
attention_weight
,
input
=
encoded_sequence
,
name
=
'%s_scaling'
%
name
)
return
pooling_layer
(
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
),
attention_weight
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
)
def
inputs
(
layers
,
*
args
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录