未验证 提交 4acf1ef7 编写于 作者: Y ykkk2333 提交者: GitHub

migrate unsqueeze kernels to phi, test=kunlun (#45673)

上级 5c95e5c8
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/unsqueeze_op.h"
#ifdef PADDLE_WITH_XPU
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(
unsqueeze,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, float>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, double>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, plat::float16>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, bool>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, int>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, uint8_t>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, int8_t>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, int64_t>);
REGISTER_OP_XPU_KERNEL(
unsqueeze_grad,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, float>,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, double>,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, plat::float16>,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, bool>,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, int>,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, int8_t>,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, uint8_t>,
ops::UnsqueezeGradKernel<paddle::platform::XPUDeviceContext, int64_t>);
REGISTER_OP_XPU_KERNEL(
unsqueeze2,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, float>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, double>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, plat::float16>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, bool>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, int>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, uint8_t>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, int8_t>,
ops::UnsqueezeKernel<paddle::platform::XPUDeviceContext, int64_t>);
REGISTER_OP_XPU_KERNEL(
unsqueeze2_grad,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext, float>,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext, double>,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext,
plat::float16>,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext, bool>,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext, int>,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext, uint8_t>,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext, int8_t>,
ops::Unsqueeze2GradKernel<paddle::platform::XPUDeviceContext, int64_t>);
#endif
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class WhereXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* condition = context.Input<framework::Tensor>("Condition");
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Input<framework::Tensor>("Y");
auto* out = context.Output<framework::Tensor>("Out");
const bool* cond_data = condition->data<bool>();
const T* x_data = X->data<T>();
const T* y_data = Y->data<T>();
T* out_data = out->mutable_data<T>(context.GetPlace());
auto cond_dims = phi::vectorize<int>(condition->dims());
auto input_dims = phi::vectorize<int>(X->dims());
auto& dev_ctx = context.template device_context<DeviceContext>();
int ret = xpu::select(dev_ctx.x_context(),
cond_data,
x_data,
y_data,
out_data,
cond_dims,
input_dims);
PADDLE_ENFORCE_EQ(ret,
XPU_SUCCESS,
platform::errors::External(
"XPU select kernel return wrong value[%d %s]",
ret,
XPUAPIErrorMsg[ret]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
where,
ops::WhereXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::WhereXPUKernel<paddle::platform::XPUDeviceContext, int>,
ops::WhereXPUKernel<paddle::platform::XPUDeviceContext, int64_t>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/unsqueeze_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/unsqueeze_grad_kernel_impl.h"
PD_REGISTER_KERNEL(unsqueeze_grad,
CPU,
ALL_LAYOUT,
phi::UnsqueezeGradKernel,
phi::dtype::bfloat16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>,
float,
double) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/unsqueeze_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/unsqueeze_kernel_impl.h"
PD_REGISTER_KERNEL(unsqueeze,
CPU,
ALL_LAYOUT,
phi::UnsqueezeKernel,
float,
double,
phi::dtype::bfloat16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(unsqueeze_with_xshape,
CPU,
ALL_LAYOUT,
phi::UnsqueezeWithXShapeKernel,
float,
double,
phi::dtype::bfloat16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/unsqueeze_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/unsqueeze_grad_kernel_impl.h"
PD_REGISTER_KERNEL(unsqueeze_grad,
GPU,
ALL_LAYOUT,
phi::UnsqueezeGradKernel,
phi::dtype::bfloat16,
phi::dtype::float16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>,
float,
double) {}
...@@ -12,19 +12,33 @@ ...@@ -12,19 +12,33 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/phi/kernels/unsqueeze_kernel.h" #include "paddle/phi/kernels/unsqueeze_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/unsqueeze_kernel_impl.h" #include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
PD_REGISTER_KERNEL(unsqueeze, namespace phi {
GPU, template <typename T, typename Context>
void UnsqueezeGradKernel(const Context& dev_ctx,
const DenseTensor& x_shape,
const DenseTensor& dout,
DenseTensor* dx) {
auto xshape_dims = x_shape.dims();
auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
dev_ctx.template Alloc<T>(dx);
phi::Copy(dev_ctx, dout, dev_ctx.GetPlace(), true, dx);
dx->Resize(x_dims);
}
} // namespace phi
PD_REGISTER_KERNEL(unsqueeze_grad,
CPU,
ALL_LAYOUT, ALL_LAYOUT,
phi::UnsqueezeKernel, phi::UnsqueezeGradKernel,
float, float,
double, double,
phi::dtype::float16,
phi::dtype::bfloat16, phi::dtype::bfloat16,
bool, bool,
int, int,
...@@ -35,10 +49,11 @@ PD_REGISTER_KERNEL(unsqueeze, ...@@ -35,10 +49,11 @@ PD_REGISTER_KERNEL(unsqueeze,
phi::dtype::complex<float>, phi::dtype::complex<float>,
phi::dtype::complex<double>) {} phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(unsqueeze_with_xshape, #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(unsqueeze_grad,
GPU, GPU,
ALL_LAYOUT, ALL_LAYOUT,
phi::UnsqueezeWithXShapeKernel, phi::UnsqueezeGradKernel,
float, float,
double, double,
phi::dtype::float16, phi::dtype::float16,
...@@ -51,3 +66,21 @@ PD_REGISTER_KERNEL(unsqueeze_with_xshape, ...@@ -51,3 +66,21 @@ PD_REGISTER_KERNEL(unsqueeze_with_xshape,
int64_t, int64_t,
phi::dtype::complex<float>, phi::dtype::complex<float>,
phi::dtype::complex<double>) {} phi::dtype::complex<double>) {}
#endif
#ifdef PADDLE_WITH_XPU
PD_REGISTER_KERNEL(unsqueeze_grad,
XPU,
ALL_LAYOUT,
phi::UnsqueezeGradKernel,
float,
double,
phi::dtype::float16,
bool,
int,
uint8_t,
int8_t,
int64_t) {}
#endif
...@@ -12,8 +12,10 @@ ...@@ -12,8 +12,10 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#pragma once #include "paddle/phi/kernels/unsqueeze_kernel.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h" #include "paddle/phi/kernels/funcs/unsqueeze.h"
...@@ -48,3 +50,98 @@ void UnsqueezeWithXShapeKernel(const Context& dev_ctx, ...@@ -48,3 +50,98 @@ void UnsqueezeWithXShapeKernel(const Context& dev_ctx,
UnsqueezeKernel<T, Context>(dev_ctx, x, axes, out); UnsqueezeKernel<T, Context>(dev_ctx, x, axes, out);
} }
} // namespace phi } // namespace phi
PD_REGISTER_KERNEL(unsqueeze,
CPU,
ALL_LAYOUT,
phi::UnsqueezeKernel,
float,
double,
phi::dtype::bfloat16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(unsqueeze_with_xshape,
CPU,
ALL_LAYOUT,
phi::UnsqueezeWithXShapeKernel,
float,
double,
phi::dtype::bfloat16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(unsqueeze,
GPU,
ALL_LAYOUT,
phi::UnsqueezeKernel,
float,
double,
phi::dtype::float16,
phi::dtype::bfloat16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
PD_REGISTER_KERNEL(unsqueeze_with_xshape,
GPU,
ALL_LAYOUT,
phi::UnsqueezeWithXShapeKernel,
float,
double,
phi::dtype::float16,
phi::dtype::bfloat16,
bool,
int,
int16_t,
uint8_t,
int8_t,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
#endif
#ifdef PADDLE_WITH_XPU
PD_REGISTER_KERNEL(unsqueeze,
XPU,
ALL_LAYOUT,
phi::UnsqueezeKernel,
float,
double,
phi::dtype::float16,
bool,
int,
uint8_t,
int8_t,
int64_t) {}
PD_REGISTER_KERNEL(unsqueeze_with_xshape,
XPU,
ALL_LAYOUT,
phi::UnsqueezeWithXShapeKernel,
float,
double,
phi::dtype::float16,
bool,
int,
uint8_t,
int8_t,
int64_t) {}
#endif
...@@ -12,20 +12,38 @@ ...@@ -12,20 +12,38 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#pragma once #include "paddle/phi/kernels/where_kernel.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi { namespace phi {
template <typename T, typename Context> template <typename T, typename Context>
void UnsqueezeGradKernel(const Context& dev_ctx, void WhereKernel(const Context& ctx,
const DenseTensor& x_shape, const DenseTensor& condition,
const DenseTensor& dout, const DenseTensor& x,
DenseTensor* dx) { const DenseTensor& y,
auto xshape_dims = x_shape.dims(); DenseTensor* out) {
auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size()); const bool* cond_data = condition.data<bool>();
dev_ctx.template Alloc<T>(dx); const T* x_data = x.data<T>();
phi::Copy(dev_ctx, dout, dev_ctx.GetPlace(), true, dx); const T* y_data = y.data<T>();
dx->Resize(x_dims); T* out_data = ctx.template Alloc<T>(out);
auto cond_dims = phi::vectorize<int>(condition.dims());
auto input_dims = phi::vectorize<int>(x.dims());
int ret = xpu::select(ctx.x_context(),
cond_data,
x_data,
y_data,
out_data,
cond_dims,
input_dims);
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "select");
} }
} // namespace phi } // namespace phi
PD_REGISTER_KERNEL(
where, XPU, ALL_LAYOUT, phi::WhereKernel, float, int, int64_t) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册