Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4a4f3f80
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4a4f3f80
编写于
11月 04, 2022
作者:
S
Sławomir Siwek
提交者:
GitHub
11月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate convs (#47658)
上级
ca4bed7b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
57 addition
and
254 deletion
+57
-254
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+0
-254
paddle/phi/kernels/onednn/conv_kernel.cc
paddle/phi/kernels/onednn/conv_kernel.cc
+57
-0
未找到文件。
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
4a4f3f80
...
@@ -776,247 +776,6 @@ class ConvMKLDNNHandlerT
...
@@ -776,247 +776,6 @@ class ConvMKLDNNHandlerT
}
// anonymous namespace
}
// anonymous namespace
#define PD_VISIT_FLOAT_AND_INT8_TYPES(TYPE, NAME, ...) \
[&] { \
const auto& __dtype__ = TYPE; \
switch (__dtype__) { \
PD_PRIVATE_CASE_TYPE( \
NAME, ::paddle::DataType::FLOAT32, float, __VA_ARGS__) \
PD_PRIVATE_CASE_TYPE( \
NAME, ::paddle::DataType::INT8, int8_t, __VA_ARGS__) \
default: \
PD_THROW("function " #NAME " is not implemented for data type `", \
__dtype__, \
"`"); \
} \
}()
template
<
typename
T
>
class
ConvMKLDNNOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"Operator DNNL Conv must use CPUPlace"
));
bool
is_INT8
=
std
::
is_same
<
T
,
int8_t
>::
value
||
std
::
is_same
<
T
,
uint8_t
>::
value
;
bool
is_BFLOAT16
=
ctx
.
Attr
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"bfloat16"
;
auto
residual_param
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"ResidualData"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
std
::
string
fuse_activation
=
ctx
.
Attr
<
std
::
string
>
(
"fuse_activation"
);
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
auto
dst_dt
=
GetDstType
(
is_INT8
,
is_BFLOAT16
,
force_fp32_output
,
fuse_activation
,
fuse_residual_conn
,
residual_param
);
if
(
!
is_INT8
)
{
if
(
dst_dt
==
dnnl
::
memory
::
data_type
::
f32
)
{
ComputeFP32
<
float
>
(
ctx
);
}
else
if
(
dst_dt
==
dnnl
::
memory
::
data_type
::
bf16
)
{
ComputeFP32
<
platform
::
bfloat16
>
(
ctx
);
}
}
else
{
if
(
dst_dt
==
dnnl
::
memory
::
data_type
::
f32
)
{
ComputeINT8
<
float
>
(
ctx
);
}
else
if
(
dst_dt
==
dnnl
::
memory
::
data_type
::
u8
)
{
ComputeINT8
<
uint8_t
>
(
ctx
);
}
else
if
(
dst_dt
==
dnnl
::
memory
::
data_type
::
s8
)
{
ComputeINT8
<
int8_t
>
(
ctx
);
}
}
}
template
<
typename
T_out
>
void
ComputeFP32
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
&
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
bool
is_conv3d
=
strides
.
size
()
==
3UL
;
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
auto
*
input
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Input"
);
const
auto
*
filter
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Filter"
);
const
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Output"
);
PD_VISIT_FLOAT_AND_INT8_TYPES
(
filter
->
dtype
(),
"ConvMKLDNNHandlerT"
,
([
&
]
{
ConvMKLDNNHandlerT
<
T
,
data_t
,
T_out
>
handler
(
ctx
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
input
,
filter
,
bias
,
output
,
ctx
.
InputName
(
"Input"
)
+
ctx
.
InputName
(
"Filter"
));
auto
src_memory_p
=
handler
.
AcquireSrcMemoryWithReorder
(
input
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryWithReorder
(
filter
,
groups
,
is_conv3d
,
is_test
);
std
::
shared_ptr
<
dnnl
::
memory
>
dst_memory_p
;
if
(
fuse_residual_conn
)
{
auto
*
residual_param
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"ResidualData"
);
dst_memory_p
=
handler
.
AcquireDstMemoryWithResidual
(
output
,
residual_param
);
}
else
{
dst_memory_p
=
handler
.
template
AcquireDstMemory
<
T_out
>(
output
);
}
auto
conv_p
=
handler
.
AcquireForwardPrimitive
();
std
::
unordered_map
<
int
,
dnnl
::
memory
>
args
=
{
{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}};
if
(
bias
)
{
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryWithReorder
(
bias
,
is_test
);
args
.
insert
({
DNNL_ARG_BIAS
,
*
bias_memory_p
});
}
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
conv_p
->
execute
(
astream
,
args
);
astream
.
wait
();
output
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}));
}
template
<
typename
T_out
>
void
ComputeINT8
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
std
::
string
&
fuse_activation
=
ctx
.
Attr
<
std
::
string
>
(
"fuse_activation"
);
const
bool
&
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
const
bool
&
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
const
bool
is_conv3d
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
).
size
()
==
3U
;
bool
unsigned_output
=
(
fuse_activation
==
"relu"
||
fuse_activation
==
"relu6"
);
bool
need_s8_to_u8
=
false
;
PADDLE_ENFORCE_NE
(
is_conv3d
,
true
,
platform
::
errors
::
Unimplemented
(
"OneDNN int8 convolution does not support 3D inputs currently"
));
PADDLE_ENFORCE_EQ
(
fuse_residual_conn
&&
force_fp32_output
,
false
,
platform
::
errors
::
Unimplemented
(
"residual fusion does not support force output with fp32"
));
auto
*
input
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Filter"
);
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Output"
);
PD_VISIT_FLOAT_AND_INT8_TYPES
(
filter
->
dtype
(),
"ConvMKLDNNHandlerT"
,
([
&
]
{
ConvMKLDNNHandlerT
<
T
,
data_t
,
T_out
>
handler
(
ctx
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
input
,
filter
,
bias
,
output
,
ctx
.
InputName
(
"Input"
)
+
ctx
.
InputName
(
"Filter"
));
auto
src_memory_p
=
handler
.
AcquireSrcMemoryWithReorder
(
input
);
const
auto
&
scale_weights_data
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"Scale_weights"
);
const
bool
is_multi_channel
=
scale_weights_data
.
size
()
>
1
;
const
int
&
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int
mask_reorder
=
is_multi_channel
?
((
groups
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryWithReorder
(
filter
,
groups
,
false
,
true
,
scale_weights_data
,
mask_reorder
);
std
::
shared_ptr
<
dnnl
::
memory
>
dst_memory_p
;
if
(
fuse_residual_conn
)
{
auto
*
residual_param
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"ResidualData"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
platform
::
errors
::
InvalidArgument
(
"Output and elementwise parameter need to have the "
"same dimension sizes, but got output's dimension = %d"
" and residual param's dimension =%d ."
,
output
->
dims
().
size
(),
residual_param
->
dims
().
size
()));
dst_memory_p
=
handler
.
AcquireDstMemoryWithResidual
(
output
,
residual_param
);
need_s8_to_u8
=
(
platform
::
MKLDNNGetDataType
<
T_out
>
()
==
dnnl
::
memory
::
data_type
::
s8
)
&&
unsigned_output
;
}
else
{
dst_memory_p
=
handler
.
template
AcquireDstMemory
<
T_out
>(
output
);
}
auto
conv_p
=
handler
.
AcquireForwardPrimitive
();
std
::
unordered_map
<
int
,
dnnl
::
memory
>
args
=
{
{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}};
if
(
bias
)
{
std
::
vector
<
float
>
bias_scales
;
auto
p_scales_tuple
=
std
::
make_shared
<
std
::
tuple
<
float
,
std
::
vector
<
float
>>>
(
std
::
make_tuple
(
static_cast
<
float
>
(
mask_reorder
),
bias_scales
));
if
(
ctx
.
HasAttr
(
"Bias_scales"
))
{
bias_scales
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"Bias_scales"
);
p_scales_tuple
=
std
::
make_shared
<
std
::
tuple
<
float
,
std
::
vector
<
float
>>>
(
std
::
make_tuple
(
static_cast
<
float
>
(
mask_reorder
),
bias_scales
));
}
else
{
p_scales_tuple
=
handler
.
get_int8_bias_scales
(
ctx
);
}
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryWithReorder
(
bias
,
true
,
std
::
get
<
1
>
(
*
p_scales_tuple
),
std
::
get
<
0
>
(
*
p_scales_tuple
));
args
.
insert
({
DNNL_ARG_BIAS
,
*
bias_memory_p
});
}
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
conv_p
->
execute
(
astream
,
args
);
astream
.
wait
();
if
(
need_s8_to_u8
)
{
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
}
output
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}));
}
};
#define PD_VISIT_FLOAT_AND_BF16_TYPES(TYPE, NAME, ...) \
#define PD_VISIT_FLOAT_AND_BF16_TYPES(TYPE, NAME, ...) \
[&] { \
[&] { \
const auto& __dtype__ = TYPE; \
const auto& __dtype__ = TYPE; \
...
@@ -1184,25 +943,12 @@ class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
...
@@ -1184,25 +943,12 @@ class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
depthwise_conv2d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvMKLDNNOpKernel
<
float
>
,
ops
::
ConvMKLDNNOpKernel
<
paddle
::
platform
::
bfloat16
>
,
ops
::
ConvMKLDNNOpKernel
<
uint8_t
>
,
ops
::
ConvMKLDNNOpKernel
<
int8_t
>
);
REGISTER_OP_KERNEL
(
depthwise_conv2d_grad
,
REGISTER_OP_KERNEL
(
depthwise_conv2d_grad
,
MKLDNN
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvMKLDNNGradOpKernel
<
float
>
,
ops
::
ConvMKLDNNGradOpKernel
<
float
>
,
ops
::
ConvMKLDNNGradOpKernel
<
paddle
::
platform
::
bfloat16
>
);
ops
::
ConvMKLDNNGradOpKernel
<
paddle
::
platform
::
bfloat16
>
);
REGISTER_OP_KERNEL
(
conv3d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
conv3d_grad
,
REGISTER_OP_KERNEL
(
conv3d_grad
,
MKLDNN
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
::
paddle
::
platform
::
CPUPlace
,
...
...
paddle/phi/kernels/onednn/conv_kernel.cc
浏览文件 @
4a4f3f80
...
@@ -424,6 +424,52 @@ void ConvKernel(const Context& dev_ctx,
...
@@ -424,6 +424,52 @@ void ConvKernel(const Context& dev_ctx,
}
}
}
}
template
<
typename
T
,
typename
Context
>
void
DepthwiseConvKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
filter
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
DenseTensor
*
out
)
{
ConvKernel
<
T
,
Context
>
(
dev_ctx
,
input
,
filter
,
strides
,
paddings
,
padding_algorithm
,
dilations
,
groups
,
data_format
,
out
);
}
template
<
typename
T
,
typename
Context
>
void
Conv3DKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
filter
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
DenseTensor
*
out
)
{
ConvKernel
<
T
,
Context
>
(
dev_ctx
,
input
,
filter
,
strides
,
paddings
,
padding_algorithm
,
dilations
,
groups
,
data_format
,
out
);
}
}
// namespace phi
}
// namespace phi
PD_REGISTER_KERNEL
(
conv2d
,
PD_REGISTER_KERNEL
(
conv2d
,
...
@@ -434,3 +480,14 @@ PD_REGISTER_KERNEL(conv2d,
...
@@ -434,3 +480,14 @@ PD_REGISTER_KERNEL(conv2d,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
bfloat16
,
uint8_t
,
uint8_t
,
int8_t
)
{}
int8_t
)
{}
PD_REGISTER_KERNEL
(
depthwise_conv2d
,
OneDNN
,
ONEDNN
,
phi
::
DepthwiseConvKernel
,
float
,
phi
::
dtype
::
bfloat16
,
uint8_t
,
int8_t
)
{}
PD_REGISTER_KERNEL
(
conv3d
,
OneDNN
,
ONEDNN
,
phi
::
Conv3DKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录