Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4a1346e5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a1346e5
编写于
10月 15, 2018
作者:
H
Haihao Shen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Delete the legacy script
上级
cb3f4264
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
394 deletion
+0
-394
calibration.py
calibration.py
+0
-394
未找到文件。
calibration.py
已删除
100644 → 0
浏览文件 @
cb3f4264
from
__future__
import
absolute_import
from
__future__
import
division
# from __future__ import print_function
import
os
import
numpy
as
np
import
time
import
sys
import
paddle
import
paddle.fluid
as
fluid
import
models
import
reader
import
argparse
import
functools
from
models.learning_rate
import
cosine_decay
from
utility
import
add_arguments
,
print_arguments
import
math
import
paddle.fluid.core
as
core
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'class_dim'
,
int
,
1000
,
"Class number."
)
add_arg
(
'image_shape'
,
str
,
"3,224,224"
,
"Input image size"
)
add_arg
(
'with_mem_opt'
,
bool
,
True
,
"Whether to use memory optimization or not."
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'model'
,
str
,
"SE_ResNeXt50_32x4d"
,
"Set the network to use."
)
# yapf: enable
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
DEBUG
=
1
def
dot
(
program
):
dot_graph
=
""
dot_nodes
=
[]
dot_edges
=
[]
dot_graph
+=
"digraph pm {
\n
"
for
block
in
program
.
blocks
:
ops
=
list
(
block
.
ops
)
block_id
=
block
.
idx
for
op
in
ops
:
op_type
=
op
.
type
op_name
=
op_type
+
"_"
+
op
.
input_arg_names
[
0
].
replace
(
"."
,
"_"
)
for
name
in
op
.
input_arg_names
:
name
=
name
.
replace
(
"."
,
"_"
)
dot_edge
=
name
+
" -> "
+
op_name
if
dot_edge
not
in
dot_edges
:
dot_edges
.
append
(
dot_edge
)
dot_node
=
name
+
" [shape=oval]"
if
dot_node
not
in
dot_nodes
:
dot_nodes
.
append
(
dot_node
)
for
name
in
op
.
output_arg_names
:
name
=
name
.
replace
(
"."
,
"_"
)
dot_edge
=
op_name
+
" -> "
+
name
if
dot_edge
not
in
dot_edges
:
dot_edges
.
append
(
dot_edge
)
dot_node
=
op_name
+
" [shape=box]"
if
dot_node
not
in
dot_nodes
:
dot_nodes
.
append
(
dot_node
)
for
dot_edge
in
dot_edges
:
dot_graph
+=
dot_edge
+
"
\n
"
for
dot_node
in
dot_nodes
:
dot_graph
+=
dot_node
+
"
\n
"
dot_graph
+=
"}"
file
=
open
(
"model.dot"
,
'w'
)
file
.
write
(
dot_graph
)
file
.
close
()
def
get_quantization_op_pos
(
program
):
conv_op_index
=
[
index
for
index
,
value
in
enumerate
(
program
.
global_block
().
ops
)
if
value
.
type
==
'conv2d'
]
if
len
(
conv_op_index
)
<
2
:
return
None
return
[
conv_op_index
[
1
]]
def
get_dequantization_op_pos
(
program
):
conv_op_index
=
[
index
for
index
,
value
in
enumerate
(
program
.
global_block
().
ops
)
if
value
.
type
==
'conv2d'
]
if
len
(
conv_op_index
)
<
2
:
return
None
res
=
[]
support_int8_op_type
=
[
"pool2d"
]
for
index
,
value
in
enumerate
(
conv_op_index
[:
-
1
]):
if
index
==
0
:
continue
if
value
+
1
==
conv_op_index
[
index
+
1
]:
continue
else
:
start_index
=
index
+
1
end_index
=
conv_op_index
[
index
+
1
]
while
start_index
<
end_index
:
if
program
.
global_block
().
ops
[
start_index
].
type
not
in
support_int8_op_type
:
print
program
.
global_block
().
ops
[
start_index
].
type
,
end_index
res
.
append
(
start_index
)
break
else
:
start_index
+=
1
last_dequantize_op_index
=
conv_op_index
[
-
1
]
# skip pooling op which is the Successor of the last conv op
while
program
.
global_block
().
ops
[
last_dequantize_op_index
+
1
].
type
in
support_int8_op_type
:
last_dequantize_op_index
+=
1
res
.
append
(
last_dequantize_op_index
)
# need to fix
return
res
def
get_requantization_op_pos
(
program
):
pass
# def create_op(program, op_name, data_type):
def
update_program_for_saving_var
(
program
,
name
,
value
,
data_shape
,
dst
,
data_type
=
"float32"
):
tmp_var
=
program
.
current_block
().
create_var
(
name
=
name
,
dtype
=
data_type
,
persistable
=
True
,
)
program
.
current_block
().
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
tmp_var
]},
attrs
=
{
'dtype'
:
core
.
VarDesc
.
VarType
.
FP32
,
'shape'
:
data_shape
,
'fp32_values'
:
value
}
)
program
.
current_block
().
append_op
(
type
=
'save'
,
inputs
=
{
'X'
:
'{}'
.
format
(
name
)},
outputs
=
{},
attrs
=
{
"file_path"
:
"{}/{}"
.
format
(
dst
,
name
)}
)
def
eval
(
args
):
# parameters from arguments
class_dim
=
args
.
class_dim
model_name
=
args
.
model
pretrained_model
=
args
.
pretrained_model
with_memory_optimization
=
args
.
with_mem_opt
image_shape
=
[
int
(
m
)
for
m
in
args
.
image_shape
.
split
(
","
)]
assert
model_name
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# model definition
model
=
models
.
__dict__
[
model_name
]()
if
model_name
is
"GoogleNet"
:
out0
,
out1
,
out2
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost0
=
fluid
.
layers
.
cross_entropy
(
input
=
out0
,
label
=
label
)
cost1
=
fluid
.
layers
.
cross_entropy
(
input
=
out1
,
label
=
label
)
cost2
=
fluid
.
layers
.
cross_entropy
(
input
=
out2
,
label
=
label
)
avg_cost0
=
fluid
.
layers
.
mean
(
x
=
cost0
)
avg_cost1
=
fluid
.
layers
.
mean
(
x
=
cost1
)
avg_cost2
=
fluid
.
layers
.
mean
(
x
=
cost2
)
avg_cost
=
avg_cost0
+
0.3
*
avg_cost1
+
0.3
*
avg_cost2
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out0
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out0
,
label
=
label
,
k
=
5
)
else
:
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
if
with_memory_optimization
:
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
t
=
fluid
.
transpiler
.
InferenceTranspiler
()
t
.
transpile
(
test_program
,
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
())
conv_op_index
=
[
index
for
index
,
value
in
enumerate
(
test_program
.
global_block
().
ops
)
if
value
.
type
==
'conv2d'
]
weights_var_name
=
[]
conv_input_var_name
=
[]
conv_output_var_name
=
[]
for
i
in
conv_op_index
[
1
:]:
weights_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
input
(
'Filter'
)[
0
])
conv_input_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
input
(
'Input'
)[
0
])
conv_output_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
output
(
'Output'
)[
0
])
not_persistable_vars
=
(
i
for
i
in
test_program
.
list_vars
()
if
not
i
.
persistable
)
back_program
=
test_program
.
clone
()
for
i
in
not_persistable_vars
:
i
.
persistable
=
True
var_name
=
[
i
.
name
for
i
in
test_program
.
list_vars
()]
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
args
.
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
]
test_info
=
[[],
[],
[]]
cnt
=
0
var_max
=
{}
for
batch_id
,
data
in
enumerate
(
val_reader
()):
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
exe
.
run
(
test_program
,
fetch_list
=
fetch_list
,
feed
=
feeder
.
feed
(
data
))
for
i
in
var_name
:
# print (np.array(fluid.global_scope().find_var(i).get_tensor()).shape)
np_data
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
i
).
get_tensor
())
if
i
in
weights_var_name
:
max_value
=
[
float
(
np
.
amax
(
np_data
[
j
]))
for
j
in
range
(
np_data
.
shape
[
0
])]
else
:
max_value
=
[
float
(
np
.
amax
(
np_data
))]
var_max
[
i
]
=
[]
var_max
[
i
].
append
(
max_value
)
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
loss
)
acc1
=
np
.
mean
(
acc1
)
acc5
=
np
.
mean
(
acc5
)
test_info
[
0
].
append
(
loss
*
len
(
data
))
test_info
[
1
].
append
(
acc1
*
len
(
data
))
test_info
[
2
].
append
(
acc5
*
len
(
data
))
cnt
+=
len
(
data
)
if
batch_id
%
10
==
0
:
print
(
"Testbatch {0},loss {1}, "
"acc1 {2},acc5 {3},time {4}"
.
format
(
batch_id
,
\
loss
,
acc1
,
acc5
,
\
"%2.2f sec"
%
period
))
sys
.
stdout
.
flush
()
break
test_loss
=
np
.
sum
(
test_info
[
0
])
/
cnt
test_acc1
=
np
.
sum
(
test_info
[
1
])
/
cnt
test_acc5
=
np
.
sum
(
test_info
[
2
])
/
cnt
print
(
"Test_loss {0}, test_acc1 {1}, test_acc5 {2}"
.
format
(
test_loss
,
test_acc1
,
test_acc5
))
sys
.
stdout
.
flush
()
infer_prog
=
test_program
.
clone
()
for
i
in
conv_input_var_name
:
update_program_for_saving_var
(
infer_prog
,
i
+
"_scale.input.test"
,
var_max
[
i
][
0
],
np
.
array
(
var_max
[
i
]).
shape
,
pretrained_model
)
for
i
in
conv_output_var_name
:
update_program_for_saving_var
(
infer_prog
,
i
+
"_scale.output.test"
,
var_max
[
i
][
0
],
np
.
array
(
var_max
[
i
]).
shape
,
pretrained_model
)
for
i
in
weights_var_name
:
update_program_for_saving_var
(
infer_prog
,
i
+
"_scale.weights.test"
,
var_max
[
i
][
0
],
np
.
array
(
var_max
[
i
]).
shape
,
pretrained_model
)
# update_program_for_saving_var(infer_prog, 'conv2_int8_tmp', var_max[var_name[1]][0], [1,], pretrained_model)
#Step 2 save all variable
for
batch_id
,
data
in
enumerate
(
val_reader
()):
loss
,
acc1
,
acc5
=
exe
.
run
(
infer_prog
,
fetch_list
=
fetch_list
,
feed
=
feeder
.
feed
(
data
))
break
int8_prog
=
back_program
.
clone
()
# for index, value in enumerate(conv_op_index[1:]):
# # print index,conv_input_var_name[index], ["{}_scale.input.test".format(conv_input_var_name[index])]
# int8_prog.current_block().ops[value].desc.set_input("Scale_in", ["{}_scale.input.test".format(conv_input_var_name[index])])
# int8_prog.current_block().ops[value].desc.set_input("Scale_out", ["{}_scale.output.test".format(conv_output_var_name[index])])
# int8_prog.current_block().ops[value].desc.set_input("Scale_weights", ["{}_scale.weights.test".format(weights_var_name[index])])
# if int8_prog.current_block().ops[value].desc.input("ResidualData"):
# name = int8_prog.current_block().ops[value].desc.input("ResidualData")[0]
# int8_prog.current_block().ops[value].desc.set_input("Scale_in_eltwise", ["{}_scale.output.test".format(name)])
quantize_pos
=
get_quantization_op_pos
(
int8_prog
)
conv2_quantize_tmp
=
int8_prog
.
current_block
().
create_var
(
name
=
"conv2_quantize_tmp"
,
dtype
=
core
.
VarDesc
.
VarType
.
UINT8
,
# persistable=True,
# lod_level= 0,
# shape= shape
)
op
=
int8_prog
.
current_block
().
_insert_op
(
index
=
quantize_pos
[
0
]
,
type
=
"quantize"
,
inputs
=
{
"Input"
:
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
-
1
].
output
(
'Out'
)[
0
],
"Scale"
:
"{}_scale.input.test"
.
format
(
conv_input_var_name
[
1
])},
outputs
=
{
"Output"
:
conv2_quantize_tmp
},
)
op
.
_set_attr
(
"data_format"
,
"NCHW"
)
op
.
_set_attr
(
"use_mkldnn"
,
1
)
# int8_prog.current_block().ops[quantize_pos[0] + 1 ].desc.set_input("Input", ["conv2_quantize_tmp"])
# for i in int8_prog.current_block().ops[quantize_pos[0] + 2:]:
# if i.type == 'conv2d' and i.input('Input')[0] == int8_prog.current_block().ops[quantize_pos[0] + 1].output('Out')[0]:
# i.desc.set_input("Input", ["conv2_quantize_tmp"])
# dequantize_pos = get_dequantization_op_pos(int8_prog)
# dequantize_tmp_var = int8_prog.current_block().create_var(
# name="dequantize_tmp_var",
# dtype="float32",
# persistable=True,
# #shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
# )
# op = int8_prog.current_block()._insert_op(
# index=dequantize_pos[0] + 1,
# type= "dequantize",
# inputs={"Input": int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0],
# "Scale": "{}_scale.output.test".format( int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0])},
# outputs={"Output": dequantize_tmp_var},
# )
# int8_prog.current_block().ops[dequantize_pos[0] + 2].desc.set_input("X", ["dequantize_tmp_var"])
#Step 3 Save the new model
# print int8_prog
# for i in int8_prog.current_block().ops:
# print '********'
# print i
# if i.type == 'conv2d':
# print i
# # print i.input_names;
# print '----'
# print i.type
# for j in i.input_names:
# print j, i.input(j)[0] if i.input(j) else ' '
# for k in i.output_names:
# print k, i.output(k)[0]
# print conv_op_index
# print dequantize_pos
# sys.exit(0)
# if DEBUG:
# dot(int8_prog)
# for i in int8_prog.current_block().ops:
# print i
print
int8_prog
for
batch_id
,
data
in
enumerate
(
val_reader
()):
loss
,
acc1
,
acc5
=
exe
.
run
(
int8_prog
,
fetch_list
=
fetch_list
,
feed
=
feeder
.
feed
(
data
))
loss
=
np
.
mean
(
loss
)
acc1
=
np
.
mean
(
acc1
)
acc5
=
np
.
mean
(
acc5
)
test_info
[
0
].
append
(
loss
*
len
(
data
))
test_info
[
1
].
append
(
acc1
*
len
(
data
))
test_info
[
2
].
append
(
acc5
*
len
(
data
))
cnt
+=
len
(
data
)
if
batch_id
%
10
==
0
:
print
(
"Testbatch {0},loss {1}, "
"acc1 {2},acc5 {3}"
.
format
(
batch_id
,
\
loss
,
acc1
,
acc5
))
sys
.
stdout
.
flush
()
break
with
open
(
"__model_quantized__"
,
"wb"
)
as
f
:
f
.
write
(
int8_prog
.
desc
.
serialize_to_string
())
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
eval
(
args
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录