Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4970414b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4970414b
编写于
6月 15, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'origin/develop' into doc/api1
上级
7ad46ec0
566a9402
变更
32
隐藏空白更改
内联
并排
Showing
32 changed file
with
1058 addition
and
446 deletion
+1058
-446
doc/v2/dev/contribute_to_paddle_cn.md
doc/v2/dev/contribute_to_paddle_cn.md
+1
-1
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+2
-1
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+23
-9
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+25
-26
paddle/fluid/operators/compare_op.cc
paddle/fluid/operators/compare_op.cc
+15
-19
paddle/fluid/operators/cumsum_op.cc
paddle/fluid/operators/cumsum_op.cc
+7
-7
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+27
-14
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
+6
-3
paddle/fluid/operators/layer_norm_op.cc
paddle/fluid/operators/layer_norm_op.cc
+17
-16
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+2
-1
paddle/fluid/operators/mean_op.cc
paddle/fluid/operators/mean_op.cc
+3
-5
paddle/fluid/operators/multiplex_op.cc
paddle/fluid/operators/multiplex_op.cc
+32
-12
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
.../fluid/operators/reader/create_recordio_file_reader_op.cc
+7
-3
paddle/fluid/operators/reader/reader_op_registry.cc
paddle/fluid/operators/reader/reader_op_registry.cc
+1
-1
paddle/fluid/operators/row_conv_op.cc
paddle/fluid/operators/row_conv_op.cc
+19
-5
paddle/fluid/operators/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt_engine_op.cc
+18
-10
paddle/fluid/operators/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt_engine_op.h
+17
-16
paddle/fluid/operators/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt_engine_op_test.cc
+98
-1
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+7
-15
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+100
-2
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+179
-15
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+83
-57
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+69
-51
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+19
-10
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+97
-116
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+85
-4
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+32
-5
python/paddle/fluid/tests/unittests/test_dist_train.py
python/paddle/fluid/tests/unittests/test_dist_train.py
+23
-6
python/paddle/fluid/tests/unittests/test_initializer.py
python/paddle/fluid/tests/unittests/test_initializer.py
+17
-0
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
...n/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
+12
-9
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+4
-0
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
...paddle/fluid/transpiler/memory_optimization_transpiler.py
+11
-6
未找到文件。
doc/v2/dev/contribute_to_paddle_cn.md
浏览文件 @
4970414b
...
...
@@ -104,7 +104,7 @@ no changes added to commit (use "git add" and/or "git commit -a")
➜ docker run
-it
-v
$(
pwd
)
:/paddle paddle:latest-dev bash
-c
"cd /paddle/build && ctest"
```
关于构建和测试的更多信息,请参见
[
这篇文档
](
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted
/build_and_install/docker_install_cn.rst
)
。
关于构建和测试的更多信息,请参见
[
使用Docker安装运行
](
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/v2
/build_and_install/docker_install_cn.rst
)
。
## 提交(commit)
...
...
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
4970414b
...
...
@@ -64,7 +64,8 @@ class OpConverter {
(
*
it
)(
op
,
scope
,
test_mode
);
}
// convert fluid block to tensorrt network
// Convert a fluid block to tensorrt network, NOTE it just convert operators,
// the INetwork's inputs and outputs should specified in some other modules.
void
ConvertBlock
(
const
framework
::
proto
::
BlockDesc
&
block
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
{
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
4970414b
...
...
@@ -51,11 +51,12 @@ class TensorRTEngine : public EngineBase {
nvinfer1
::
Weights
w_
;
};
TensorRTEngine
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
,
TensorRTEngine
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
=
nullptr
,
nvinfer1
::
ILogger
&
logger
=
NaiveLogger
::
Global
())
:
max_batch_
(
max_batch
),
max_workspace_
(
max_workspace
),
stream_
(
stream
),
stream_
(
stream
?
stream
:
&
default_stream_
),
logger_
(
logger
)
{}
virtual
~
TensorRTEngine
();
...
...
@@ -121,6 +122,8 @@ class TensorRTEngine : public EngineBase {
// the max memory size the engine uses
int
max_workspace_
;
cudaStream_t
*
stream_
;
// If stream_ is not set from outside, hold its own stream.
cudaStream_t
default_stream_
;
nvinfer1
::
ILogger
&
logger_
;
std
::
vector
<
Buffer
>
buffers_
;
...
...
@@ -165,20 +168,31 @@ class TensorRTEngine : public EngineBase {
*/
class
TRT_EngineManager
{
public:
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
)
{
engines_
.
emplace_back
(
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
));
return
engines_
.
back
().
get
();
bool
HasEngine
(
const
std
::
string
&
name
)
const
{
return
engines_
.
count
(
name
)
!=
0
;
}
// Get an engine called `name`.
TensorRTEngine
*
Get
(
const
std
::
string
&
name
)
const
{
return
engines_
.
at
(
name
).
get
();
}
// Create or get an engine called `name`
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
,
const
std
::
string
&
name
)
{
auto
*
p
=
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
);
engines_
[
name
].
reset
(
p
);
return
p
;
}
void
DeleteALl
()
{
for
(
auto
&
ptr
:
engines_
)
{
ptr
.
reset
(
nullptr
);
for
(
auto
&
item
:
engines_
)
{
item
.
second
.
reset
(
nullptr
);
}
}
private:
std
::
vector
<
std
::
unique_ptr
<
TensorRTEngine
>>
engines_
;
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
TensorRTEngine
>>
engines_
;
};
}
// namespace tensorrt
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
4970414b
...
...
@@ -112,7 +112,7 @@ $$out = \frac{1}{1 + e^{-x}}$$
__attribute__
((
unused
))
constexpr
char
LogSigmoidDoc
[]
=
R"DOC(
Logsigmoid Activation Operator
$$out = \
log
\frac{1}{1 + e^{-x}}$$
$$out = \
\log \
\frac{1}{1 + e^{-x}}$$
)DOC"
;
...
...
@@ -252,15 +252,14 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"Output of Softshrink operator"
);
AddAttr
<
float
>
(
"lambda"
,
"non-negative offset"
).
SetDefault
(
0.5
f
);
AddComment
(
R"DOC(
Softshrink Activation Operator.
:strong:`Softshrink Activation Operator`
$$
out = \begin{cases}
x - \lambda, \text{if } x > \lambda \\
x + \lambda, \text{if } x < -\lambda \\
0, \text{otherwise}
\end{cases}
$$
.. math::
out = \begin{cases}
x - \lambda, \text{if } x > \lambda \\
x + \lambda, \text{if } x < -\lambda \\
0, \text{otherwise}
\end{cases}
)DOC"
);
}
...
...
@@ -271,18 +270,18 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"X"
,
"Input of HardShrink operator"
);
AddOutput
(
"Out"
,
"Output of HardShrink operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The value of threshold for HardShrink"
)
AddAttr
<
float
>
(
"threshold"
,
"The value of threshold for HardShrink. [default: 0.5]"
)
.
SetDefault
(
0.5
f
);
AddComment
(
R"DOC(
HardShrink Activation Operator.
:strong:`HardShrink activation operator`
$$
out = \begin{cases}
x, \text{if } x > \lambda \\
x, \text{if } x < -\lambda \\
0, \text{otherwise}
\end{cases}
$$
.. math::
out = \begin{cases}
x, \text{if } x > \lambda \\
x, \text{if } x < -\lambda \\
0, \text{otherwise}
\end{cases}
)DOC"
);
}
...
...
@@ -394,18 +393,18 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"X"
,
"Input of ThresholdedRelu operator"
);
AddOutput
(
"Out"
,
"Output of ThresholdedRelu operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The threshold location of activation"
)
AddAttr
<
float
>
(
"threshold"
,
"The threshold location of activation. [default 1.0]."
)
.
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
ThresholdedRelu Activation Operator.
:strong:`ThresholdedRelu activation operator`
$$
out = \begin{cases}
x, \text{if } x > threshold \\
0, \text{otherwise}
\end{cases}
$$
.. math::
out = \begin{cases}
x, \text{if } x > threshold \\
0, \text{otherwise}
\end{cases}
)DOC"
);
}
};
...
...
paddle/fluid/operators/compare_op.cc
浏览文件 @
4970414b
...
...
@@ -23,30 +23,26 @@ class CompareOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
OpComment
comment
;
AddInput
(
"X"
,
string
::
Sprintf
(
"(LoDTensor) the left hand operand of %s operator"
,
comment
.
type
));
AddInput
(
"Y"
,
string
::
Sprintf
(
"(LoDTensor) the right hand operand of %s operator"
,
comment
.
type
));
AddInput
(
"X"
,
string
::
Sprintf
(
"the left hand operand of %s operator"
,
comment
.
type
));
AddInput
(
"Y"
,
string
::
Sprintf
(
"the right hand operand of %s operator"
,
comment
.
type
));
AddAttr
<
bool
>
(
"force_cpu"
,
"
(bool, default false)
Force fill output variable to cpu "
"Force fill output variable to cpu "
"memory. Otherwise, fill output variable to the running "
"device"
)
.
SetDefault
(
false
);
AddOutput
(
"Out"
,
string
::
Sprintf
(
"(LoDTensor) n-dim bool tensor. Each element is %s"
,
comment
.
equation
));
AddComment
(
string
::
Sprintf
(
R"DOC(%s Operator
"device [default true]."
)
.
SetDefault
(
true
);
AddOutput
(
"Out"
,
string
::
Sprintf
(
"n-dim bool tensor. Each element is %s"
,
comment
.
equation
));
AddComment
(
string
::
Sprintf
(
R"DOC(
It operates element-wise on X and Y, and returns the Out. Each of them is a
N-dim tensor. X and Y could be any type. The each element of the Out tensor is
calculated by
%s
calculated by
$%s$
)DOC"
,
comment
.
type
,
comment
.
equation
));
AddAttr
<
int
>
(
"axis"
,
"(int, default -1). The start dimension index "
"for broadcasting Y onto X.
"
)
comment
.
equation
));
AddAttr
<
int
>
(
"axis"
,
"The start dimension index for broadcasting Y onto X. [default -1]
"
)
.
SetDefault
(
-
1
)
.
EqualGreaterThan
(
-
1
);
}
...
...
paddle/fluid/operators/cumsum_op.cc
浏览文件 @
4970414b
...
...
@@ -30,19 +30,19 @@ class CumOp : public framework::OperatorWithKernel {
class
CumsumOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"Input of
C
umsum operator"
);
AddOutput
(
"Out"
,
"Output of
C
umsum operator"
);
AddInput
(
"X"
,
"Input of
c
umsum operator"
);
AddOutput
(
"Out"
,
"Output of
c
umsum operator"
);
AddAttr
<
int
>
(
"axis"
,
"
(int, default -1). The dimenstion to accumulate along.
"
"
-1 means the last dimenstion
"
)
"
The dimenstion to accumulate along. -1 means the last
"
"
dimenstion [default -1].
"
)
.
SetDefault
(
-
1
)
.
EqualGreaterThan
(
-
1
);
AddAttr
<
bool
>
(
"exclusive"
,
"
bool, default false). Whether to perform exclusive cumsum
"
)
"
Whether to perform exclusive cumsum. [default false].
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"reverse"
,
"
bool, default false). If true, the cumsum is performed in
"
"
the reversed direction
"
)
"
If true, the cumsum is performed in the reversed direction.
"
"
[default false].
"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
The cumulative sum of the elements along a given axis.
...
...
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
4970414b
...
...
@@ -106,23 +106,36 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"and M represents the number of deocded boxes."
);
AddComment
(
R"DOC(
Bounding Box Coder Operator.
Bounding Box Coder.
Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below:
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv
oh = log(abs(th / ph)) / phv
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv
oh = log(abs(th / ph)) / phv
The Decoding schema described below:
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where tx, ty, tw, th denote the target box's center coordinates, width and
height respectively. Similarly, px, py, pw, ph denote the priorbox's(anchor)
center coordinates, width and height. pxv, pyv, pwv, phv denote the variance
of the priorbox and ox, oy, ow, oh denote the encoded/decoded coordinates,
width and height.
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
priorbox's (anchor) center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the priorbox and `ox`, `oy`, `ow`, `oh` denote the
encoded/decoded coordinates, width and height.
)DOC"
);
}
};
...
...
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
浏览文件 @
4970414b
...
...
@@ -36,11 +36,12 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
void
Apply
()
override
{
AddAttr
<
float
>
(
"mean"
,
"(float, default 0.0) "
"
mean of random tensor
."
)
"
The mean (or center) of the gaussian distribution
."
)
.
SetDefault
(
.0
f
);
AddAttr
<
float
>
(
"std"
,
"(float, default 1.0) "
"std of random tensor."
)
"The standard deviation (std, or spread) of the "
"gaussian distribution."
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
...
...
@@ -55,9 +56,11 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
AddComment
(
R"DOC(
GaussianRandom Operator.
Used to initialize tensors with gaussian random generator.
The defalut mean of the distribution is 0. and defalut standard
deviation (std) of the distribution is 1.. Uers can set mean and std
by input arguments.
)DOC"
);
}
};
...
...
paddle/fluid/operators/layer_norm_op.cc
浏览文件 @
4970414b
...
...
@@ -62,36 +62,33 @@ class LayerNormOp : public framework::OperatorWithKernel {
class
LayerNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"
(LoDTensor)
The input tensor."
);
AddInput
(
"X"
,
"The input tensor."
);
AddInput
(
"Scale"
,
"(
Tensor,
optional) Scale is a 1-dimensional tensor of size "
"(optional) Scale is a 1-dimensional tensor of size "
"H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
"It is applied to the output."
)
.
AsDispensable
();
AddInput
(
"Bias"
,
"(
Tensor,
optional) Bias is a 1-dimensional tensor of size "
"(optional) Bias is a 1-dimensional tensor of size "
"H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
"It is applied to the output."
)
.
AsDispensable
();
AddOutput
(
"Y"
,
"(LoDTensor) Result after normalization."
);
AddOutput
(
"Mean"
,
"(Tensor) Mean of the current mini batch."
)
.
AsIntermediate
();
AddOutput
(
"Variance"
,
"(Tensor) Variance of the current mini batch."
)
AddOutput
(
"Y"
,
"Result after normalization."
);
AddOutput
(
"Mean"
,
"Mean of the current mini batch."
).
AsIntermediate
();
AddOutput
(
"Variance"
,
"Variance of the current mini batch."
)
.
AsIntermediate
();
AddAttr
<
float
>
(
"epsilon"
,
"(float, default 1e-5) Constant for "
"numerical stability"
)
"Constant for numerical stability [default 1e-5]."
)
.
SetDefault
(
1e-5
)
.
AddCustomChecker
([](
const
float
&
epsilon
)
{
PADDLE_ENFORCE
(
epsilon
>=
0.0
f
&&
epsilon
<=
0.001
f
,
"'epsilon' should be between 0.0 and 0.001."
);
});
AddAttr
<
int
>
(
"begin_norm_axis"
,
"(int default:1), the "
"axis of `begin_norm_axis ... Rank(X) - 1` will be "
"the axis of `begin_norm_axis ... Rank(X) - 1` will be "
"normalized. `begin_norm_axis` splits the tensor(`X`) to a "
"matrix [N,H]."
)
"matrix [N,H].
[default 1].
"
)
.
SetDefault
(
1
)
.
AddCustomChecker
([](
const
int
&
begin_norm_axis
)
{
PADDLE_ENFORCE_GT
(
begin_norm_axis
,
0
,
...
...
@@ -99,10 +96,14 @@ class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddComment
(
R"DOC(
Layer Normalization.
Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.
Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
)DOC"
);
}
};
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
4970414b
...
...
@@ -348,7 +348,8 @@ class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
};
void
SignalHandler
::
StopAndExit
(
int
signal_num
)
{
VLOG
(
3
)
<<
"Catch interrupt signal: "
<<
signal_num
<<
", program will exit"
;
// Do not use VLOG here for the device for printing maybe already released.
// exit will release interal allocated resoureces.
exit
(
0
);
}
...
...
paddle/fluid/operators/mean_op.cc
浏览文件 @
4970414b
...
...
@@ -33,12 +33,10 @@ class MeanOp : public framework::OperatorWithKernel {
class
MeanOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
).
Reuse
(
"X"
);
AddInput
(
"X"
,
"
(Tensor)
The input of mean op"
);
AddOutput
(
"Out"
,
"
(Tensor)
The output of mean op"
).
Reuse
(
"X"
);
AddComment
(
R"DOC(
Mean Operator.
Out is a scalar which is the mean of all elements in X.
Mean Operator calculates the mean of all elements in X.
)DOC"
);
}
...
...
paddle/fluid/operators/multiplex_op.cc
浏览文件 @
4970414b
...
...
@@ -62,26 +62,46 @@ class MultiplexOp : public framework::OperatorWithKernel {
class
MultiplexOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Ids"
,
"The index tensor of multiplex operator."
);
AddInput
(
"X"
,
"The candidate tensors of multiplex operator."
)
AddInput
(
"Ids"
,
"Tensor<int32>, index variable which is a 2-D tensor with shape "
"[M, 1] where M is the batch size."
);
AddInput
(
"X"
,
"A list of variables to gather from. All variables have the same "
"shape and the rank is at least 2."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"The output tensor of multiplex operator."
);
AddComment
(
R"DOC(
Multiplex Operator.
Multiplex multiple tensors according to the index provided by the index tensor.
Ids: the index tensor.
X[0 : N - 1]: the candidate tensors for output (N >= 2).
For each index i from 0 to batchSize - 1, the output is the i-th row of the
Referring to the given index variable, this layer selects rows from the
input variables to construct a multiplex variable. Assuming that there are
:math:`m` input variables and :math:`I_i` represents the i-th input
variable and :math:`i` is in [0, :math:`m`). All input variables are
tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
Please note that rank of the input tensor should be at least 2. Each input
variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
* ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
variable. The given index variable should be a 2-D tensor with shape
[:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
Then the output variable will be a tensor with shape [:math:`d_0`,
:math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
* Ids: the index tensor.
* X[0 : N - 1]: the candidate tensors for output (N >= 2).
* For each index i from 0 to batchSize - 1, the output is the i-th row of the
the (Ids[i])-th tensor.
For i-th row of the output tensor:
$$y[i] = x_{k}[i]$$
$$
y[i] = x_{k}[i]
$$
where
`y` is the output tensor, `x_{k}`
is the k-th input tensor,
and
`k = Ids[i]`
.
where
$y$ is the output tensor, $x_{k}$
is the k-th input tensor,
and
$k = Ids[i]$
.
)DOC"
);
}
...
...
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
浏览文件 @
4970414b
...
...
@@ -78,11 +78,15 @@ class CreateRecordIOReaderOp : public framework::OperatorBase {
class
CreateRecordIOReaderOpMaker
:
public
FileReaderMakerBase
{
protected:
void
Apply
()
override
{
AddAttr
<
std
::
string
>
(
"filename"
,
"The filename of record io reader"
);
AddAttr
<
std
::
string
>
(
"filename"
,
"The filename of record file. This file will given to reader."
);
AddComment
(
R"DOC(
CreateRecordIOReader Operator
Open a recordio file and return the reader object. The returned reader object
is thread-safe.
Create a reader from a record io file
NOTE: This is a very low-level API. It is used for debugging data file or
training. Please use `open_files` instead of this API for production usage.
)DOC"
);
}
};
...
...
paddle/fluid/operators/reader/reader_op_registry.cc
浏览文件 @
4970414b
...
...
@@ -54,7 +54,7 @@ std::unique_ptr<framework::ReaderBase> CreateReaderByFileName(
}
void
FileReaderMakerBase
::
Make
()
{
AddOutput
(
"Out"
,
"(ReaderHolder) The created random reader."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"(ReaderHolder)
:
The created random reader."
).
AsDuplicable
();
AddAttr
<
std
::
vector
<
int
>>
(
"shape_concat"
,
"The concat of all data's shapes."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ranks"
,
...
...
paddle/fluid/operators/row_conv_op.cc
浏览文件 @
4970414b
...
...
@@ -78,23 +78,23 @@ class RowConvOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"
(LoDTensor),
the input(X) is a LodTensor, which supports "
"the input(X) is a LodTensor, which supports "
"variable time-length input sequences. The underlying tensor "
"in this LoDTensor is a matrix with shape (T x N), where T "
"is the total time steps in this mini-batch and N is the input "
"data dimension."
);
AddInput
(
"Filter"
,
"
(Tensor),
the input(Filter) is a learnable parameter. It "
"the input(Filter) is a learnable parameter. It "
"is a 2-D tensor with shape (future_context x N), where, "
"future_context is the future context length and N is the data "
"dimension."
);
AddOutput
(
"Out"
,
"
(LoDTensor),
the output(Out) is a LodTensor, which supports "
"the output(Out) is a LodTensor, which supports "
"variable time-length input sequences. The underlying tensor "
"in this LodTensor is a matrix with shape T x N, i.e., the "
"same shape as X."
);
AddComment
(
R"DOC(
Row-convolution Operator.
:strong:`Row-convolution operator`
The row convolution is called lookahead convolution. This operator was
introduced in the following paper for DeepSpeech2:
...
...
@@ -114,9 +114,23 @@ and a filter ($W$) of size $context \times d$,
the output sequence is convolved as:
$$
out_{i, :} = \
sum_{j=i}^{i + context} in_{j,:} \
dot W_{i-j, :}
out_{i, :} = \
\sum_{j=i}^{i + context} in_{j,:} \\c
dot W_{i-j, :}
$$
In the above equation:
* $Out_{i}$: The i-th row of output variable with shape [1, D].
* $\\tau$: Future context size.
* $X_{j}$: The j-th row of input variable with shape [1, D].
* $W_{i-j}$: The (i-j)-th row of parameters with shape [1, D].
More details about row_conv please refer to
the design document
https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .
)DOC"
);
}
};
...
...
paddle/fluid/operators/tensorrt_engine_op.cc
浏览文件 @
4970414b
...
...
@@ -66,17 +66,25 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
}
// namespace
template
<
typename
DeviceContext
,
typename
T
>
void
paddle
::
operators
::
TensorRTEngineKernel
<
DeviceContext
,
T
>::
Prepare
(
void
TensorRTEngineKernel
<
DeviceContext
,
T
>::
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
// Get the ProgramDesc and pass to convert.
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
context
.
Attr
<
std
::
string
>
(
"subgraph"
));
max_batch_
=
context
.
Attr
<
int
>
(
"max_batch"
);
int
max_batch
=
context
.
Attr
<
int
>
(
"max_batch"
);
auto
max_workspace
=
context
.
Attr
<
int
>
(
"max_workspace"
);
engine_
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch_
,
max_workspace
,
&
stream_
);
engine_
->
InitNetwork
();
auto
params
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
std
::
unordered_set
<
std
::
string
>
parameters
;
for
(
const
auto
&
param
:
params
)
{
parameters
.
insert
(
param
);
}
// TODO(Superjomn) replace this with a different stream
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch
,
max_workspace
,
nullptr
/*engine hold its own stream*/
,
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
));
engine
->
InitNetwork
();
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
// Add inputs
...
...
@@ -87,24 +95,23 @@ void paddle::operators::TensorRTEngineKernel<DeviceContext, T>::Prepare(
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
shape
=
var
->
GetShape
();
engine
_
->
DeclareInput
(
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
var
->
GetShape
()));
}
// TODO(Superjomn) parameters should be passed after analysised from outside.
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
().
ConvertBlock
(
block_desc
,
{},
context
.
scope
(),
engine_
);
block_desc
,
parameters
,
context
.
scope
(),
engine
);
// Add outputs
VLOG
(
4
)
<<
"declare outputs"
;
for
(
auto
&
output
:
context
.
Outputs
(
"Ys"
))
{
VLOG
(
4
)
<<
"declare output "
<<
output
;
engine
_
->
DeclareOutput
(
output
);
engine
->
DeclareOutput
(
output
);
}
engine
_
->
FreezeNetwork
();
engine
->
FreezeNetwork
();
}
class
TensorRTEngineOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -113,6 +120,7 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Xs"
,
"A list of inputs."
).
AsDuplicable
();
AddOutput
(
"Ys"
,
"A list of outputs"
).
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph."
);
AddAttr
<
std
::
string
>
(
"engine_uniq_key"
,
"unique key for the TRT engine."
);
AddAttr
<
int
>
(
"max_batch"
,
"the maximum batch size."
);
AddAttr
<
int
>
(
"max_workspace"
,
"the maximum batch size."
);
AddComment
(
"TensorRT engine operator."
);
...
...
paddle/fluid/operators/tensorrt_engine_op.h
浏览文件 @
4970414b
...
...
@@ -19,10 +19,14 @@
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
namespace
paddle
{
namespace
operators
{
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TRT_EngineManager
;
class
TensorRTEngineOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -47,16 +51,18 @@ template <typename DeviceContext, typename T>
class
TensorRTEngineKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
if
(
!
engine_
)
{
auto
engine_name
=
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
);
if
(
!
Singleton
<
TRT_EngineManager
>::
Global
().
HasEngine
(
engine_name
))
{
Prepare
(
context
);
}
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Get
(
engine_name
);
auto
input_names
=
context
.
op
().
Inputs
(
"Xs"
);
PADDLE_ENFORCE
(
!
input_names
.
empty
(),
"should pass more than one inputs"
);
// Try to determine a batch_size
auto
&
tensor0
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
input_names
.
front
());
int
batch_size
=
tensor0
.
dims
()[
0
];
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_
);
PADDLE_ENFORCE_LE
(
batch_size
,
context
.
Attr
<
int
>
(
"max_batch"
)
);
// Convert input tensor from fluid to engine.
for
(
const
auto
&
x
:
context
.
Inputs
(
"Xs"
))
{
...
...
@@ -64,20 +70,20 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
x
);
if
(
platform
::
is_cpu_place
(
t
.
place
()))
{
engine
_
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
engine
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
else
{
engine
_
->
SetInputFromGPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
engine
->
SetInputFromGPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
}
// Execute the engine.
PADDLE_ENFORCE_GT
(
batch_size
,
0
);
engine
_
->
Execute
(
batch_size
);
engine
->
Execute
(
batch_size
);
// Convert output tensor from engine to fluid
for
(
const
auto
&
y
:
context
.
Outputs
(
"Ys"
))
{
// convert output and copy to fluid.
nvinfer1
::
ITensor
*
trt_t
=
engine
_
->
GetITensor
(
y
);
nvinfer1
::
ITensor
*
trt_t
=
engine
->
GetITensor
(
y
);
auto
dims
=
trt_t
->
getDimensions
();
// Use the output ITensor's dims to reshape the Fluid Tensor.
std
::
vector
<
int
>
ddim
(
dims
.
d
,
dims
.
d
+
dims
.
nbDims
);
...
...
@@ -89,27 +95,22 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
if
(
platform
::
is_cpu_place
(
fluid_t
->
place
()))
{
// TODO(Superjomn) change this float to dtype size.
engine
_
->
GetOutputInCPU
(
engine
->
GetOutputInCPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
size
*
sizeof
(
float
));
}
else
{
engine
_
->
GetOutputInGPU
(
engine
->
GetOutputInGPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
()),
size
*
sizeof
(
float
));
}
}
cudaStreamSynchronize
(
stream_
);
cudaStreamSynchronize
(
*
engine
->
stream
()
);
}
protected:
// Build the engine.
void
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
;
private:
mutable
cudaStream_t
stream_
;
mutable
inference
::
tensorrt
::
TensorRTEngine
*
engine_
{
nullptr
};
mutable
int
max_batch_
{
0
};
};
}
// namespace operators
...
...
paddle/fluid/operators/tensorrt_engine_op_test.cc
浏览文件 @
4970414b
...
...
@@ -79,6 +79,17 @@ void SetAttr<int64_t>(framework::proto::OpDesc* op, const std::string& name,
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
LONG
);
attr
->
set_l
(
data
);
}
template
<
>
void
SetAttr
<
std
::
vector
<
std
::
string
>>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRINGS
);
for
(
const
auto
&
s
:
data
)
{
attr
->
add_strings
(
s
.
c_str
());
}
}
}
// namespace
...
...
@@ -123,11 +134,15 @@ TEST(TensorRTEngineOp, manual) {
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
3
0
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
10
0
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_workspace"
,
1
<<
10
);
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"engine_uniq_key"
,
"a_engine"
);
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"parameters"
,
std
::
vector
<
std
::
string
>
({}));
LOG
(
INFO
)
<<
"create engine op"
;
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
());
LOG
(
INFO
)
<<
"engine_op "
<<
engine_op
.
get
();
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
...
...
@@ -145,6 +160,88 @@ TEST(TensorRTEngineOp, manual) {
engine_op
->
Run
(
scope
,
place
);
}
void
Execute
(
int
batch_size
,
int
input_dim
,
int
output_dim
,
int
nlayers
=
1
)
{
framework
::
ProgramDesc
program
;
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
auto
*
block_
=
program
.
Proto
()
->
add_blocks
();
block_
->
set_idx
(
0
);
block_
->
set_parent_idx
(
-
1
);
using
shape_t
=
std
::
vector
<
int64_t
>
;
LOG
(
INFO
)
<<
"create block desc"
;
framework
::
BlockDesc
block_desc
(
&
program
,
block_
);
auto
AddFCLayer
=
[
&
](
const
std
::
string
&
x_name
,
const
std
::
string
&
y_name
,
const
std
::
string
&
z_name
,
bool
x_created
,
const
shape_t
&
x_shape
,
const
shape_t
&
y_shape
,
const
shape_t
&
z_shape
)
{
LOG
(
INFO
)
<<
"create fc op"
;
auto
*
fc
=
block_desc
.
AppendOp
();
fc
->
SetType
(
"mul"
);
fc
->
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
x_name
}));
fc
->
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
y_name
}));
fc
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
z_name
}));
// Set inputs' variable shape in BlockDesc
if
(
!
x_created
)
{
AddTensorToBlockDesc
(
block_
,
x_name
,
std
::
vector
<
int64_t
>
({
batch_size
,
input_dim
,
1
,
1
}));
}
AddTensorToBlockDesc
(
block_
,
y_name
,
std
::
vector
<
int64_t
>
({
input_dim
,
output_dim
}));
AddTensorToBlockDesc
(
block_
,
z_name
,
std
::
vector
<
int64_t
>
({
batch_size
,
output_dim
}));
// Prepare variables.
if
(
!
x_created
)
{
CreateCPUTensor
(
&
scope
,
x_name
,
std
::
vector
<
int64_t
>
(
x_shape
));
}
CreateCPUTensor
(
&
scope
,
y_name
,
std
::
vector
<
int64_t
>
(
y_shape
));
CreateCPUTensor
(
&
scope
,
z_name
,
std
::
vector
<
int64_t
>
(
z_shape
));
// It is wired, need to copy manually.
*
block_
->
add_ops
()
=
*
fc
->
Proto
();
};
// Test with 4 layer FC
AddFCLayer
(
"x0"
,
"y0"
,
"z0"
,
false
,
{
batch_size
,
input_dim
},
{
input_dim
,
output_dim
},
{
batch_size
,
output_dim
});
AddFCLayer
(
"z0"
,
"y1"
,
"z1"
,
true
,
{},
{
output_dim
,
output_dim
},
{
batch_size
,
output_dim
});
AddFCLayer
(
"z1"
,
"y2"
,
"z2"
,
true
,
{},
{
output_dim
,
output_dim
},
{
batch_size
,
output_dim
});
AddFCLayer
(
"z2"
,
"y3"
,
"z3"
,
true
,
{},
{
output_dim
,
output_dim
},
{
batch_size
,
output_dim
});
LOG
(
INFO
)
<<
"create tensorrt desc"
;
framework
::
OpDesc
engine_op_desc
(
nullptr
);
engine_op_desc
.
SetType
(
"tensorrt_engine"
);
engine_op_desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
({
"x0"
}));
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z3"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
batch_size
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_workspace"
,
2
<<
10
);
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"parameters"
,
std
::
vector
<
std
::
string
>
({
"y0"
,
"y1"
,
"y2"
,
"y3"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"engine_uniq_key"
,
"b_engine"
);
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
());
// Execute them.
engine_op
->
Run
(
scope
,
place
);
}
// Test with a larger FC layer.
TEST
(
TensorRTEngineOp
,
fc
)
{
Execute
(
40
,
256
,
256
);
}
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
4970414b
...
...
@@ -86,32 +86,24 @@ class UniformRandomOp : public framework::OperatorWithKernel {
class
UniformRandomOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddOutput
(
"Out"
,
"
(Tensor)
The output tensor of uniform random op"
);
AddOutput
(
"Out"
,
"The output tensor of uniform random op"
);
AddComment
(
R"DOC(
Uniform random operator.
This operator initializes a tensor with random values sampled from a
uniform distribution.
uniform distribution.
The random result is in set [min, max].
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output tensor"
);
AddAttr
<
float
>
(
"min"
,
"(float, default -1.0) "
"Minimum value of uniform random"
)
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"The shape of the output tensor"
);
AddAttr
<
float
>
(
"min"
,
"Minimum value of uniform random. [default -1.0]."
)
.
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"(float, default 1.0) "
"Maximun value of uniform random"
)
AddAttr
<
float
>
(
"max"
,
"Maximun value of uniform random. [default 1.0]."
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
"Random seed used for generating samples. "
"0 means use a seed generated by the system."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time."
)
"generate the same random numbers every time.
[default 0].
"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"dtype"
,
"
(int, default 5(FP32)) Output tensor data type
"
)
AddAttr
<
int
>
(
"dtype"
,
"
Output tensor data type. [default 5(FP32)].
"
)
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
}
};
...
...
python/paddle/fluid/initializer.py
浏览文件 @
4970414b
...
...
@@ -15,11 +15,13 @@
import
framework
import
numpy
as
np
import
contextlib
from
framework
import
convert_np_dtype_to_dtype_
from
core
import
VarDesc
__all__
=
[
'Constant'
,
'Uniform'
,
'Normal'
,
'Xavier'
,
'force_init_on_cpu'
,
'Constant'
,
'Uniform'
,
'Normal'
,
'Xavier'
,
'
Bilinear'
,
'
force_init_on_cpu'
,
'init_on_cpu'
,
'ConstantInitializer'
,
'UniformInitializer'
,
'NormalInitializer'
,
'XavierInitializer'
'NormalInitializer'
,
'XavierInitializer'
,
'BilinearInitializer'
]
_force_init_on_cpu_
=
False
...
...
@@ -422,6 +424,101 @@ class MSRAInitializer(Initializer):
return
op
class
BilinearInitializer
(
Initializer
):
"""Implements the bilinear initializer.
This initializer can be used in transposed convolution operator to
act as upsampling. Users can upsample a feature map with shape of
(B, C, H, W) by any integer factor. The usage is:
>>> factor = 2
>>> w_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.),
>>> initializer=Bilinear())
>>> conv_up = fluid.layers.conv2d_transpose(
>>> input,
>>> num_filters=C,
>>> output_size=None,
>>> filter_size=2 * factor - factor % 2,
>>> padding=ceil((factor - 1) / 2.),
>>> stride=factor,
>>> groups=C,
>>> param_attr=w_attr,
>>> bias_attr=False)
Where, `num_filters=C` and `groups=C` means this is channel-wise tranposed
convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
This initializer will set a (K, K) interpolation kernel for every channel
of the filter identically. The resulting shape of the output feature map
will be (B, C, factor * H, factor * W). Note that the learning rate and the
weight decay are set to 0 in order to keep coefficient values of bilinear
interpolation unchanged during training.
"""
def
__init__
(
self
):
"""Constructor for BilinearInitializer.
"""
super
(
BilinearInitializer
,
self
).
__init__
()
def
__call__
(
self
,
var
,
block
):
"""Add biliear initialization ops for a variable
Args:
var (Variable): Variable that needs to be initialized.
block (Block): The block in which initialization ops should
be added.
Returns:
the initialization op
Raises:
ValueError: If type of `var` and `block` is not right.
If the shape of `var` size is not 4 and
var.shape[2] != var.shape[3].
"""
if
not
isinstance
(
var
,
framework
.
Variable
):
raise
ValueError
(
"var must be framework.Variable."
)
if
not
isinstance
(
block
,
framework
.
Block
):
raise
ValueError
(
"block must be framework.Block."
)
shape
=
var
.
shape
if
len
(
shape
)
!=
4
:
raise
ValueError
(
"the length of shape must be 4."
)
if
shape
[
2
]
!=
shape
[
3
]:
raise
ValueError
(
"shape[2] must be equal to shape[3]."
)
weight
=
np
.
zeros
(
np
.
prod
(
var
.
shape
),
dtype
=
'float32'
)
size
=
shape
[
3
]
# factor
f
=
np
.
ceil
(
size
/
2.
)
# center
c
=
(
2
*
f
-
1
-
f
%
2
)
/
(
2.
*
f
)
for
i
in
range
(
np
.
prod
(
shape
)):
x
=
i
%
size
y
=
(
i
/
size
)
%
size
weight
[
i
]
=
(
1
-
abs
(
x
/
f
-
c
))
*
(
1
-
abs
(
y
/
f
-
c
))
weight
=
np
.
reshape
(
weight
,
shape
)
if
var
.
dtype
==
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
weight
.
flat
]
else
:
raise
ValueError
(
"Unsupported dtype %s"
,
input
.
dtype
)
if
np
.
prod
(
shape
)
>
1024
*
1024
:
raise
ValueError
(
"The size of input is too big. "
)
op
=
block
.
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
'dtype'
:
var
.
dtype
,
'shape'
:
list
(
shape
),
value_name
:
values
})
var
.
op
=
op
return
op
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
...
...
@@ -436,3 +533,4 @@ Uniform = UniformInitializer
Normal
=
NormalInitializer
Xavier
=
XavierInitializer
MSRA
=
MSRAInitializer
Bilinear
=
BilinearInitializer
python/paddle/fluid/layers/control_flow.py
浏览文件 @
4970414b
...
...
@@ -20,6 +20,7 @@ from ..framework import Program, Variable, Operator
from
..layer_helper
import
LayerHelper
,
unique_name
from
..initializer
import
force_init_on_cpu
from
ops
import
logical_and
,
logical_not
,
logical_or
import
numpy
__all__
=
[
'split_lod_tensor'
,
...
...
@@ -706,7 +707,7 @@ def lod_rank_table(x, level=0):
.. code-block:: python
x = fluid.layers.data(name='x', shape=[10],
dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
out = layers.lod_rank_table(x=x, level=0)
"""
helper
=
LayerHelper
(
"lod_rank_table"
,
**
locals
())
...
...
@@ -908,37 +909,40 @@ def create_array(dtype):
dtype
=
dtype
)
def
less_than
(
x
,
y
,
force_cpu
=
True
,
cond
=
None
,
**
ignored
):
@
templatedoc
()
def
less_than
(
x
,
y
,
force_cpu
=
None
,
cond
=
None
,
**
ignored
):
"""
**Less than**
${comment}
This layer returns the truth value of :math:`x < y` elementwise.
>>> import paddle.fluid as fluid
>>> less = fluid.layers.less_than(x=label, y=limit)
Args:
x(
Variable): First operand of *less_than*
y(
Variable): Second operand of *less_than*
force_cpu(
Bool|True): The output data will be on CPU if set true
.
x(
${x_type}): ${x_comment}.
y(
${y_type}): ${y_comment}.
force_cpu(
${force_cpu_type}): ${force_cpu_comment}
.
cond(Variable|None): Optional output variable to store the result of *less_than*
Returns:
Variable: The tensor variable storing the output of *less_than*.
Examples:
.. code-block:: python
less = fluid.layers.less_than(x=label, y=limit)
${out_comment}.
"""
helper
=
LayerHelper
(
"less_than"
,
**
locals
())
if
cond
is
None
:
cond
=
helper
.
create_tmp_variable
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
attrs
=
dict
()
if
force_cpu
is
not
None
:
attrs
[
'force_cpu'
]
=
force_cpu
elif
force_init_on_cpu
():
attrs
[
'force_cpu'
]
=
force_init_on_cpu
()
helper
.
append_op
(
type
=
'less_than'
,
inputs
=
{
'X'
:
[
x
],
'Y'
:
[
y
]},
outputs
=
{
'Out'
:
[
cond
]},
attrs
=
{
'force_cpu'
:
force_cpu
or
force_init_on_cpu
()}
)
attrs
=
attrs
)
return
cond
...
...
@@ -1003,8 +1007,28 @@ def array_read(array, i):
def
shrink_memory
(
x
,
i
,
table
):
"""
This function creates an operator to shrink
_rnn_
memory using the RankTable
This function creates an operator to shrink
rnn
memory using the RankTable
as mentioned in the input parameter.
NOTE: This API is very low-level API. It is used by DynamicRNN only.
Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
will be sorted by order, and the length of valid memory will be shrink after
each time step.
Args:
x(Variable): The memory object in the previous time step.
i(Variable): The step count variable. A int scalar as LoDTensor.
table(Variable): The RNNRankTable object.
Returns:
the memory variable after shrink.
Examples:
Since this API is very low level API. The example is not provided.
Please reference the implementation of class DynamicRNN for detail
usage.
"""
helper
=
LayerHelper
(
'shrink_memory'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
...
...
@@ -1338,6 +1362,38 @@ class IfElse(object):
class
DynamicRNN
(
object
):
"""
The dynamic RNN can process a batch of sequence data. The length of each
sample sequence can be different. This API automatically process them in
batch.
The input lod must be set. Please reference `lod_tensor`
>>> import paddle.fluid as fluid
>>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
>>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
>>> is_sparse=True)
>>>
>>> drnn = fluid.layers.DynamicRNN()
>>> with drnn.block():
>>> word = drnn.step_input(embedding)
>>> prev = drnn.memory(shape=[200])
>>> hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
>>> drnn.update_memory(prev, hidden) # set prev to hidden
>>> drnn.output(hidden)
>>>
>>> # last is the last time step of rnn. It is the encoding result.
>>> last = fluid.layers.sequence_last_step(drnn())
The dynamic RNN will unfold sequence into timesteps. Users need to define
how to process each time step during the :code:`with` block.
The `memory` is used staging data cross time step. The initial value of
memory can be zero or another variable.
The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
get the output sequence.
"""
BEFORE_RNN
=
0
IN_RNN
=
1
AFTER_RNN
=
2
...
...
@@ -1360,6 +1416,15 @@ class DynamicRNN(object):
self
.
mem_link
=
[]
def
step_input
(
self
,
x
):
"""
Mark a sequence as a dynamic RNN input.
Args:
x(Variable): The input sequence.
Returns:
The current timestep in the input sequence.
"""
self
.
_assert_in_rnn_block_
(
"step_input"
)
if
not
isinstance
(
x
,
Variable
):
raise
TypeError
(
...
...
@@ -1403,6 +1468,15 @@ class DynamicRNN(object):
return
array_read
(
array
=
input_array
,
i
=
self
.
step_idx
)
def
static_input
(
self
,
x
):
"""
Mark a variable as a RNN input. The input will not be scattered into
time steps.
Args:
x(Variable): The input variable.
Returns:
The input variable that can access in RNN.
"""
self
.
_assert_in_rnn_block_
(
"static_input"
)
if
not
isinstance
(
x
,
Variable
):
raise
TypeError
(
...
...
@@ -1424,6 +1498,10 @@ class DynamicRNN(object):
@
contextlib
.
contextmanager
def
block
(
self
):
"""
The block for user to define operators in RNN. See the class docstring
for more details.
"""
if
self
.
status
!=
DynamicRNN
.
BEFORE_RNN
:
raise
ValueError
(
"rnn.block() can only be invoke once"
)
self
.
step_idx
=
fill_constant
(
...
...
@@ -1450,6 +1528,9 @@ class DynamicRNN(object):
x
=
each_array
,
table
=
self
.
lod_rank_table
))
def
__call__
(
self
,
*
args
,
**
kwargs
):
"""
Get the output of RNN. This API should only be invoked after RNN.block()
"""
if
self
.
status
!=
DynamicRNN
.
AFTER_RNN
:
raise
ValueError
((
"Output of the dynamic RNN can only be visited "
"outside the rnn block."
))
...
...
@@ -1464,6 +1545,70 @@ class DynamicRNN(object):
value
=
0.0
,
need_reorder
=
False
,
dtype
=
'float32'
):
"""
Create a memory variable for dynamic rnn.
If the :code:`init` is not None, :code:`memory` will be initialized by
this variable. The :code:`need_reorder` is used to reorder the memory as
the input variable. It should be set to true when the initialized memory
depends on the input sample.
For example,
>>> import paddle.fluid as fluid
>>> sentence = fluid.layers.data(
>>> name='sentence', dtype='float32', shape=[32])
>>> boot_memory = fluid.layers.data(
>>> name='boot', dtype='float32', shape=[10])
>>>
>>> drnn = fluid.layers.DynamicRNN()
>>> with drnn.block():
>>> word = drnn.step_input(sentence)
>>> memory = drnn.memory(init=boot_memory, need_reorder=True)
>>> hidden = fluid.layers.fc(
>>> input=[word, memory], size=10, act='tanh')
>>> drnn.update_memory(ex_mem=memory, new_mem=hidden)
>>> drnn.output(hidden)
>>> rnn_output = drnn()
Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
:code:`memory` will be initialized by this :code:`value`.
For example,
>>> import paddle.fluid as fluid
>>> sentence = fluid.layers.data(
>>> name='sentence', dtype='float32', shape=[32])
>>>
>>> drnn = fluid.layers.DynamicRNN()
>>> with drnn.block():
>>> word = drnn.step_input(sentence)
>>> memory = drnn.memory(shape=[10], dtype='float32', value=0)
>>> hidden = fluid.layers.fc(
>>> input=[word, memory], size=10, act='tanh')
>>> drnn.update_memory(ex_mem=memory, new_mem=hidden)
>>> drnn.output(hidden)
>>> rnn_output = drnn()
Args:
init(Variable|None): The initialized variable.
shape(list|tuple): The memory shape. NOTE the shape does not contain
batch_size.
value(float): the initalized value.
need_reorder(bool): True if the initialized memory depends on the
input sample.
dtype(str|numpy.dtype): The data type of the initialized memory.
Returns:
the memory variable.
"""
self
.
_assert_in_rnn_block_
(
'memory'
)
if
init
is
not
None
:
if
not
isinstance
(
init
,
Variable
):
...
...
@@ -1531,6 +1676,16 @@ class DynamicRNN(object):
return
self
.
memory
(
init
=
init
)
def
update_memory
(
self
,
ex_mem
,
new_mem
):
"""
Update the memory from ex_mem to new_mem. NOTE that the shape and data
type of :code:`ex_mem` and :code:`new_mem` must be same.
Args:
ex_mem(Variable): the memory variable.
new_mem(Variable): the plain variable generated in RNN block.
Returns:
None
"""
self
.
_assert_in_rnn_block_
(
'update_memory'
)
if
not
isinstance
(
ex_mem
,
Variable
):
raise
TypeError
(
"The input arg `ex_mem` of update_memory() must "
...
...
@@ -1548,6 +1703,15 @@ class DynamicRNN(object):
self
.
mem_link
.
append
((
new_mem
,
mem_array
))
def
output
(
self
,
*
outputs
):
"""
mark the RNN output variables.
Args:
outputs: The output variables.
Returns:
None
"""
self
.
_assert_in_rnn_block_
(
'output'
)
parent_block
=
self
.
_parent_block_
()
for
each
in
outputs
:
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
4970414b
...
...
@@ -210,53 +210,68 @@ def bipartite_match(dist_matrix,
dist_threshold
=
None
,
name
=
None
):
"""
**Bipartite matchint operator**
This operator is a greedy bipartite matching algorithm, which is used to
obtain the matching with the maximum distance based on the input
This operator implements a greedy bipartite matching algorithm, which is
used to obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
of columns of the input ditance matrix.
There are two outputs to save matched indices and distance.
A simple description, this algothrim matched the best (maximum distance)
find the matched column for each row (matched means the largest distance),
also can find the matched row for each column. And this operator only
calculate matched indices from column to row. For each instance,
the number of matched indices is the column number of the input distance
matrix.
There are two outputs, matched indices and distance.
A simple description, this algorithm matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.
Please note that
the input DistMat can be LoDTensor (with LoD) or Tensor.
NOTE:
the input DistMat can be LoDTensor (with LoD) or Tensor.
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.
NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
layer. Please consider to use :code:`ssd_loss` instead.
Args:
dist_matrix(Variable): This input is a 2-D LoDTensor with shape
[K, M]. It is pair-wise distance matrix between the entities
represented by each row and each column. For example, assumed one
entity is A with shape [K], another entity is B with shape [M]. The
dist_matirx[i][j] is the distance between A[i] and B[j]. The bigger
the distance is, the better macthing the pairs are. Please note,
This tensor can contain LoD information to represent a batch of
inputs. One instance of this batch can contain different numbers of
entities.
dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
the distance is, the better matching the pairs are.
NOTE: This tensor can contain LoD information to represent a batch
of inputs. One instance of this batch can contain different numbers
of entities.
match_type(string|None): The type of matching method, should be
'bipartite' or 'per_prediction'
, 'bipartite' by defalut
.
'bipartite' or 'per_prediction'
. [default 'bipartite']
.
dist_threshold(float|None): If `match_type` is 'per_prediction',
this threshold is to determine the extra matching bboxes based
on the maximum distance, 0.5 by defa
lu
t.
on the maximum distance, 0.5 by defa
ul
t.
Returns:
match_indices(Variable): A 2-D Tensor with shape [N, M] in int type.
N is the batch size. If match_indices[i][j] is -1, it
means B[j] does not match any entity in i-th instance.
Otherwise, it means B[j] is matched to row
match_indices[i][j] in i-th instance. The row number of
i-th instance is saved in match_indices[i][j].
match_distance(Variable): A 2-D Tensor with shape [N, M] in float type.
N is batch size. If match_indices[i][j] is -1,
match_distance[i][j] is also -1.0. Otherwise, assumed
match_distance[i][j] = d, and the row offsets of each instance
are called LoD. Then match_distance[i][j] = dist_matrix[d+LoD[i]][j].
tuple: a tuple with two elements is returned. The first is
matched_indices, the second is matched_distance.
The matched_indices is a 2-D Tensor with shape [N, M] in int type.
N is the batch size. If match_indices[i][j] is -1, it
means B[j] does not match any entity in i-th instance.
Otherwise, it means B[j] is matched to row
match_indices[i][j] in i-th instance. The row number of
i-th instance is saved in match_indices[i][j].
The matched_distance is a 2-D Tensor with shape [N, M] in float type
. N is batch size. If match_indices[i][j] is -1,
match_distance[i][j] is also -1.0. Otherwise, assumed
match_distance[i][j] = d, and the row offsets of each instance
are called LoD. Then match_distance[i][j] =
dist_matrix[d+LoD[i]][j].
Examples:
>>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
>>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
>>> iou = fluid.layers.iou_similarity(x=x, y=y)
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
"""
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
match_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
...
...
@@ -364,7 +379,7 @@ def ssd_loss(location,
normalize
=
True
,
sample_size
=
None
):
"""
**Multi-box loss layer for object dection algorithm of SSD**
**Multi-box loss layer for object de
te
ction algorithm of SSD**
This layer is to compute dection loss for SSD given the location offset
predictions, confidence predictions, prior boxes and ground-truth boudding
...
...
@@ -372,21 +387,35 @@ def ssd_loss(location,
is a weighted sum of the localization loss (or regression loss) and
confidence loss (or classification loss) by performing the following steps:
1. Find matched boundding box by bipartite matching algorithm.
1. Find matched bounding box by bipartite matching algorithm.
1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
1.2 Compute matched boundding box by bipartite matching algorithm.
2. Compute confidence for mining hard examples
2.1. Get the target label based on matched indices.
2.2. Compute confidence loss.
3. Apply hard example mining to get the negative example indices and update
the matched indices.
4. Assign classification and regression targets
4.1. Encoded bbox according to the prior boxes.
4.2. Assign regression targets.
4.3. Assign classification targets.
5. Compute the overall objective loss.
5.1 Compute confidence loss.
5.1 Compute localization loss.
5.3 Compute the overall weighted loss.
Args:
...
...
@@ -421,39 +450,36 @@ def ssd_loss(location,
mining_type (str): The hard example mining type, should be 'hard_example'
or 'max_negative', now only support `max_negative`.
normalize (bool): Whether to normalize the SSD loss by the total number
of output locations, True by defa
lu
t.
of output locations, True by defa
ul
t.
sample_size (int): The max sample size of negative box, used only when
mining_type is 'hard_example'.
Returns:
Variable: The weighted sum of the localization loss and confidence loss,
with shape [N * Np, 1], N and Np are the same as they are
in `location`.
The weighted sum of the localization loss and confidence loss, with
\
shape [N * Np, 1], N and Np are the same as they are in `location`.
Raises:
ValueError: If mining_type is 'hard_example', now only support
mining
type of `max_negative`.
ValueError: If mining_type is 'hard_example', now only support
mining
\
type of `max_negative`.
Examples:
.. code-block:: python
pb = layers.data(
name='prior_box',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
pbv = layers.data(
name='prior_box_var',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
gt_box = layers.data(
name='gt_box', shape=[4], lod_level=1, dtype='float32')
gt_label = layers.data(
name='gt_label', shape=[1], lod_level=1, dtype='float32')
loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
>>> pb = fluid.layers.data(
>>> name='prior_box',
>>> shape=[10, 4],
>>> append_batch_size=False,
>>> dtype='float32')
>>> pbv = fluid.layers.data(
>>> name='prior_box_var',
>>> shape=[10, 4],
>>> append_batch_size=False,
>>> dtype='float32')
>>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
>>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
>>> gt_box = fluid.layers.data(
>>> name='gt_box', shape=[4], lod_level=1, dtype='float32')
>>> gt_label = fluid.layers.data(
>>> name='gt_label', shape=[1], lod_level=1, dtype='float32')
>>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
"""
helper
=
LayerHelper
(
'ssd_loss'
,
**
locals
())
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
4970414b
...
...
@@ -22,9 +22,9 @@ from ..executor import global_scope
from
layer_function_generator
import
generate_layer_fn
,
templatedoc
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'
open_recordio_file
'
,
'open_
files'
,
'read_file'
,
'shuffle'
,
'batch'
,
'double_buffer
'
,
'random_data_generator'
,
'Preprocessor'
,
'load'
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'
Recv
'
,
'open_
recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch
'
,
'
double_buffer'
,
'
random_data_generator'
,
'Preprocessor'
,
'load'
]
...
...
@@ -177,18 +177,17 @@ class ListenAndServ(object):
})
def
Send
(
endpoints
,
send_vars
,
get_vars
=
Non
e
):
def
Send
(
endpoints
,
send_vars
,
sync
=
Tru
e
):
"""
Send layer
Send variables to the server side, and get vars from server
side when server have finished running server side program.
Args:
endpoints: comma seperated IP:PORT pairs in the order
endpoints
(str)
: comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars: vars to send
get_vars: vars to get from server after send completes.
Send variables to the server side, and get vars from server
side when server have finished running server side program.
send_vars (list): variables to send to server
sync (bool): whether to wait the request finish
"""
assert
(
type
(
send_vars
)
==
list
)
...
...
@@ -196,40 +195,33 @@ def Send(endpoints, send_vars, get_vars=None):
endpoints
=
list
(
set
(
epmap
))
helper
=
LayerHelper
(
"Send"
,
**
locals
())
if
not
get_vars
:
get_vars
=
[]
for
s
in
send_vars
:
v
=
helper
.
create_tmp_variable
(
dtype
=
s
.
dtype
,
stop_gradient
=
True
)
get_vars
.
append
(
v
)
rpc_op_role_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
helper
.
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_vars
},
outputs
=
{
"Out"
:
get_vars
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
,
rpc_op_role_name
:
core
.
op_proto_and_checker_maker
.
OpRole
.
RPC
})
return
get_vars
if
sync
:
helper
.
append_op
(
type
=
"send_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
def
Recv
(
endpoints
,
get_vars
):
def
Recv
(
endpoints
,
get_vars
,
sync
=
True
):
"""
Rec
v layer
Rec
eive variables from server side
Args:
endpoints: comma seperated IP:PORT pairs in the order
endpoints
(str)
: comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars: vars to send
get_vars: vars to get from server after send completes.
get_vars (list): vars to get from server after send completes.
sync (bool): whether to wait the request finish
Send variables to the server side, and get vars from server
side when server have finished running server side program.
Returns:
list: list of received variables
"""
assert
(
type
(
send_vars
)
==
list
)
assert
(
type
(
get_vars
)
==
list
)
epmap
=
endpoints
.
split
(
","
)
...
...
@@ -242,6 +234,9 @@ def Recv(endpoints, get_vars):
outputs
=
{
"Out"
:
get_vars
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
})
if
sync
:
helper
.
append_op
(
type
=
"fetch_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
return
get_vars
def
monkey_patch_reader_methods
(
reader
):
...
...
@@ -292,6 +287,7 @@ def _copy_reader_create_op_(block, op):
return
new_op
@
templatedoc
(
op_type
=
'create_recordio_file_reader'
)
def
open_recordio_file
(
filename
,
shapes
,
lod_levels
,
...
...
@@ -299,34 +295,30 @@ def open_recordio_file(filename,
pass_num
=
1
,
for_parallel
=
True
):
"""
Open a RecordIO file
This layer takes a RecordIO file to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from the given RecordIO file.
${comment}
Args:
filename(
str): The RecordIO file's name
.
filename(
${filename_type}): ${filename_comment}
.
shapes(list): List of tuples which declaring data shapes.
lod_levels(
list): List of ints which declaring data lod_level
.
lod_levels(
${lod_levels_type}): ${lod_levels_comment}
.
dtypes(list): List of strs which declaring data type.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
Variable: A Reader Variable via which we can get RecordIO file data
.
${out_comment}
.
Examples:
.. code-block:: python
reader = fluid.layers.io.open_recordio_file(
filename='./data.recordio',
shapes=[(3,224,224), (1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader)
>>> import paddle.fluid as fluid
>>> reader = fluid.layers.io.open_recordio_file(
>>> filename='./data.recordio',
>>> shapes=[(3,224,224), (1)],
>>> lod_levels=[0, 0],
>>> dtypes=['float32', 'int64'])
>>> # Via the reader, we can use 'read_file' layer to get data:
>>> image, label = fluid.layers.io.read_file(reader)
"""
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
...
...
@@ -386,16 +378,16 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
Variable: A Reader Variable from which we can get random data.
Examples:
.. code-block:: python
reader = fluid.layers.io.random_data_generator(
low=0.0,
high=1.0,
shapes=[(3,224,224), (1)],
lod_levels=[0, 0])
.. code-block:: python
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader)
reader = fluid.layers.random_data_generator(
low=0.0,
high=1.0,
shapes=[[3,224,224], [1]],
lod_levels=[0, 0])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.read_file(reader)
"""
dtypes
=
[
core
.
VarDesc
.
VarType
.
FP32
]
*
len
(
shapes
)
shape_concat
=
[]
...
...
@@ -544,6 +536,9 @@ def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
def
shuffle
(
reader
,
buffer_size
):
"""
Shuffle the reader.
"""
return
__create_unshared_decorated_reader__
(
'create_shuffle_reader'
,
reader
,
{
'buffer_size'
:
int
(
buffer_size
)})
...
...
@@ -554,6 +549,29 @@ def batch(reader, batch_size):
def
double_buffer
(
reader
,
place
=
None
,
name
=
None
):
"""
Wrap a double buffer reader. The data will copy to target place with a
double buffer queue. If the target place is None, the place that executor
perform on will be used.
Args:
reader(Variable): the reader variable need to be wrapped.
place(Place): the place of target data. Default is the sample place of
executor perform.
name(str): Variable name. None if the user does not care.
Returns:
wrapped reader with double buffer.
Examples:
>>> reader = fluid.layers.open_files(filenames=['somefile'],
>>> shapes=[[-1, 784], [-1, 1]],
>>> dtypes=['float32', 'int64'])
>>> reader = fluid.layers.double_buffer(reader)
>>> img, label = fluid.layers.read_file(reader)
"""
attrs
=
dict
()
if
place
is
not
None
:
attrs
[
'place'
]
=
str
(
place
).
upper
()
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
4970414b
...
...
@@ -44,6 +44,11 @@ def _type_to_str_(tp):
return
framework_pb2
.
AttrType
.
Name
(
tp
)
_two_dollar_pattern_
=
re
.
compile
(
r
"\$\$([^\$]+)\$\$"
)
_single_dollar_pattern_
=
re
.
compile
(
r
"\$([^\$]+)\$"
)
_two_bang_pattern_
=
re
.
compile
(
r
"!!([^!]+)!!"
)
def
_generate_doc_string_
(
op_proto
):
"""
Generate docstring by OpProto
...
...
@@ -55,22 +60,26 @@ def _generate_doc_string_(op_proto):
str: the document string
"""
def
escape_math
(
text
):
return
_two_bang_pattern_
.
sub
(
r
'$$\1$$'
,
_single_dollar_pattern_
.
sub
(
r
':math:`\1`'
,
_two_dollar_pattern_
.
sub
(
r
"!!\1!!"
,
text
)))
if
not
isinstance
(
op_proto
,
framework_pb2
.
OpProto
):
raise
TypeError
(
"OpProto should be `framework_pb2.OpProto`"
)
buf
=
cStringIO
.
StringIO
()
buf
.
write
(
op_proto
.
comment
)
buf
.
write
(
escape_math
(
op_proto
.
comment
)
)
buf
.
write
(
'
\n
Args:
\n
'
)
for
each_input
in
op_proto
.
inputs
:
line_begin
=
' {0}: '
.
format
(
_convert_
(
each_input
.
name
))
buf
.
write
(
line_begin
)
buf
.
write
(
each_input
.
comment
)
buf
.
write
(
'
\n
'
)
buf
.
write
(
' '
*
len
(
line_begin
))
buf
.
write
(
'Duplicable: '
)
buf
.
write
(
str
(
each_input
.
duplicable
))
buf
.
write
(
' Optional: '
)
buf
.
write
(
str
(
each_input
.
dispensable
))
buf
.
write
(
escape_math
(
each_input
.
comment
))
if
each_input
.
duplicable
:
buf
.
write
(
" Duplicatable."
)
if
each_input
.
dispensable
:
buf
.
write
(
" Optional."
)
buf
.
write
(
'
\n
'
)
skip_attrs
=
OpProtoHolder
.
generated_op_attr_names
()
...
...
@@ -83,7 +92,7 @@ def _generate_doc_string_(op_proto):
buf
.
write
(
' ('
)
buf
.
write
(
_type_to_str_
(
each_attr
.
type
))
buf
.
write
(
'): '
)
buf
.
write
(
e
ach_attr
.
comment
)
buf
.
write
(
e
scape_math
(
each_attr
.
comment
)
)
buf
.
write
(
'
\n
'
)
if
len
(
op_proto
.
outputs
)
!=
0
:
...
...
@@ -92,7 +101,7 @@ def _generate_doc_string_(op_proto):
for
each_opt
in
op_proto
.
outputs
:
if
not
each_opt
.
intermediate
:
break
buf
.
write
(
e
ach_opt
.
comment
)
buf
.
write
(
e
scape_math
(
each_opt
.
comment
)
)
return
buf
.
getvalue
()
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
4970414b
...
...
@@ -225,11 +225,11 @@ def embedding(input,
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed
(bool): Whether to run lookup table from remote parameter server.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output
with zeros whenever lookup encounters it in :attr:`input`. If
:math:`padding_idx < 0`, the
padding_idx
to use in lookup is
:math:`padding_idx < 0`, the
:attr:`padding_idx`
to use in lookup is
:math:`size[0] + dim`.
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
...
...
@@ -364,8 +364,7 @@ def dynamic_lstm(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh",
"relu", "identity"],
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
...
...
@@ -540,27 +539,31 @@ def dynamic_lstmp(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh",
"relu", "identity"],
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
proj_activation(str): The activation for projection output.
Choices = ["sigmoid", "tanh",
"relu", "identity"],
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The projection of hidden state, and cell state of LSTMP. The
\
shape of projection is (T x P), for the cell state which is
\
(T x D), and both LoD is the same with the `input`.
tuple: A tuple of two output variable: the projection of hidden state,
\
and cell state of LSTMP. The shape of projection is (T x P),
\
for the cell state which is (T x D), and both LoD is the same
\
with the `input`.
Examples:
.. code-block:: python
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim, proj_dim = 512, 256
fc_out = fluid.layers.fc(input=
input_seq
, size=hidden_dim * 4,
fc_out = fluid.layers.fc(input=
emb
, size=hidden_dim * 4,
act=None, bias_attr=None)
proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
size=hidden_dim * 4,
...
...
@@ -626,10 +629,10 @@ def dynamic_gru(input,
candidate_activation
=
'tanh'
,
h_0
=
None
):
"""
**
Dynamic GRU
Layer**
**
Gated Recurrent Unit (GRU)
Layer**
Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
.
The formula is as follows:
...
...
@@ -676,17 +679,25 @@ def dynamic_gru(input,
Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
h_0 (Variable): The hidden output of the first time step.
h_0 (Variable): This is initial hidden state. If not set, default is
zero. This is a tensor with shape (N x D), where N is the number of
total time steps of input mini-batch feature and D is the hidden
size.
Returns:
Variable: The hidden state of GRU. The shape is :math:`(T
\\
times D)`,
\
and
lod
is the same with the input.
and
sequence length
is the same with the input.
Examples:
.. code-block:: python
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=
data
, size=hidden_dim * 3)
x = fluid.layers.fc(input=
emb
, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
"""
...
...
@@ -927,13 +938,13 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
Drop or keep each element of `x` independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during
training. The dropout operator randomly set (according to the given dropout
training. The dropout operator randomly set
s
(according to the given dropout
probability) the outputs of some units to zero, while others are remain
unchanged.
Args:
x (Variable): The input tensor.
dropout_prob (float): Probability of setting units to zero.
x (Variable): The input tensor
variable
.
dropout_prob (float): Probability of setting units to zero.
is_test (bool): A flag indicating whether it is in test phrase or not.
seed (int): A Python integer used to create random seeds. If this
parameter is set to None, a random seed is used.
...
...
@@ -943,13 +954,14 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
will be named automatically.
Returns:
Variable: A tensor variable.
Variable: A tensor variable
is the shape with `x`
.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
droped = fluid.layers.dropout(input=x, dropout_rate
=0.5)
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
droped = fluid.layers.dropout(x, dropout_prob
=0.5)
"""
helper
=
LayerHelper
(
'dropout'
,
**
locals
())
...
...
@@ -1234,14 +1246,17 @@ def conv2d(input,
act
=
None
,
name
=
None
):
"""
**Convlution2D Layer**
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input
(Input)
and
Output
(Output) are in NCHW format. W
here N is batch size, C is the number of
and strides, paddings, dilations, groups parameters. Input and
Output
are in NCHW format, w
here N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
The details of convolution layer, please refer UFLDL's `convolution,
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
Filter is in MCHW format, where M is the number of output image channels,
C is the number of input image channels, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input image channels divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more detials.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
...
...
@@ -1252,15 +1267,14 @@ def conv2d(input,
Out = \sigma (W
\\
ast X + b)
In the above equation
:
Where
:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`
\\
ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`
\\
sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
different.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
...
...
@@ -1271,6 +1285,7 @@ def conv2d(input,
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
...
...
@@ -1282,7 +1297,7 @@ def conv2d(input,
Args:
input (Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
...
...
@@ -1305,7 +1320,8 @@ def conv2d(input,
bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not.
use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
with mkldnn library. Default: False
act (str): Activation type. Default: None
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
...
...
@@ -1951,6 +1967,7 @@ def batch_norm(input,
return
helper
.
append_activation
(
batch_norm_out
)
@
templatedoc
()
def
layer_norm
(
input
,
scale
=
True
,
shift
=
True
,
...
...
@@ -1961,20 +1978,11 @@ def layer_norm(input,
act
=
None
,
name
=
None
):
"""
**Layer Normalization**
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.
Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
${comment}
The formula is as follows:
.. math::
..
math::
\\
mu & =
\\
frac{1}{H}
\\
sum_{i=1}^{H} a_i
...
...
@@ -1982,6 +1990,15 @@ def layer_norm(input,
h & = f(
\\
frac{g}{
\\
sigma}(a -
\\
mu) + b)
* :math:`a`: the vector representation of the summed inputs to the neurons
in that layer.
* :math:`H`: the number of hidden units in a layers
* :math:`g`: the trainable scale parameter.
* :math:`b`: the trainable bias parameter.
Args:
input(Variable): The input tensor variable.
scale(bool): Whether to learn the adaptive gain :math:`g` after
...
...
@@ -2000,14 +2017,13 @@ def layer_norm(input,
name (str): The name of this layer. It is optional.
Returns:
Variable: A tensor variable with the same shape as the input.
${y_comment}
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[3, 32, 32],
dtype='float32')
x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
>>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
>>>
dtype='float32')
>>>
x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
"""
helper
=
LayerHelper
(
'layer_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -3007,32 +3023,33 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes
.. math::
y =
\f
rac{x}{ \sqrt{\sum {x^2} + epsion }}
y =
\\
frac{x}{ \sqrt{\sum {x^2} + epsion }}
For `x` with more dimensions, this layer independently normalizes each 1-D
slice along dimension `axis`.
Args:
x(Variable|list): The input tensor to l2_normalize layer.
axis(int): The axis on which to apply normalization. If `axis < 0`,
axis(int): The axis on which to apply normalization. If `axis < 0`,
\
the dimension to normalization is rank(X) + axis. -1 is the
last dimension.
epsilon(float): The epsilon value is used to avoid division by zero,
epsilon(float): The epsilon value is used to avoid division by zero,
\
the defalut value is 1e-10.
name(str|None): A name for this layer(optional). If set None, the layer
name(str|None): A name for this layer(optional). If set None, the layer
\
will be named automatically.
Returns:
Variable: The output tensor variable.
Variable: The output tensor variable
is the same shape with `x`
.
Examples:
.. code-block:: python
data = fluid.layers.data(name="data",
shape=(3, 17, 13),
dtype="float32")
normed = fluid.layers.l2_normalize(x=data, axis=1)
data = fluid.layers.data(name="data",
shape=(3, 17, 13),
dtype="float32")
normed = fluid.layers.l2_normalize(x=data, axis=1)
"""
if
len
(
x
.
shape
)
==
1
:
...
...
@@ -3710,29 +3727,13 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
return
out
@
templatedoc
()
def
row_conv
(
input
,
future_context_size
,
param_attr
=
None
,
act
=
None
):
"""Row Conv Operator. This layer will apply lookahead convolution to
**input**. The input variable should be a 2D LoDTensor with shape [T, D].
Parameters with shape [future_context_size + 1, D] will be created. The math
equation of row convolution is as follows:
.. math::
Out_{i} = \sum_{j = i} ^ {i +
\\
tau} X_{j} \odot W_{i - j}
In the above equation:
* :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
* :math:`
\\
tau`: Future context size.
* :math:`X_{j}`: The j-th row of input variable with shape [1, D].
* :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].
More details about row_conv please refer to the paper
\
(http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
the design document
\
(https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).
"""
${comment}
Args:
input (
Variable): Input variable, a 2D LoDTensor with shape [T, D]
.
input (
${x_type}): ${x_comment}
.
future_context_size (int): Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].
param_attr (ParamAttr): Attributes of parameters, including
...
...
@@ -3740,14 +3741,13 @@ def row_conv(input, future_context_size, param_attr=None, act=None):
act (str): Non-linear activation to be applied to output variable.
Returns:
Variable: The output tensor with same shape as input tensor
.
${out_comment}
.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[16],
dtype='float32', lod_level=1)
out = fluid.layers.row_conv(input=x, future_context_size=2)
>>> import paddle.fluid as fluid
>>> x = fluid.layers.data(name='x', shape=[16],
>>> dtype='float32', lod_level=1)
>>> out = fluid.layers.row_conv(input=x, future_context_size=2)
"""
helper
=
LayerHelper
(
'row_conv'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -3763,42 +3763,23 @@ def row_conv(input, future_context_size, param_attr=None, act=None):
return
helper
.
append_activation
(
out
)
@
templatedoc
()
def
multiplex
(
inputs
,
index
):
"""
**Multiplex Layer**
Referring to the given index variable, this layer selects rows from the
input variables to construct a multiplex variable. Assuming that there are
:math:`m` input variables and :math:`I_i` represents the i-th input
variable and :math:`i` is in [0, :math:`m`). All input variables are
tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
Please note that rank of the input tensor should be at least 2. Each input
variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
* ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
variable. The given index variable should be a 2-D tensor with shape
[:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
Then the output variable will be a tensor with shape [:math:`d_0`,
:math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
${comment}
>>> import paddle.fluid as fluid
>>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
>>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
>>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
>>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
Args:
inputs (list): A list of variables to gather from. All variables have the
same shape and the rank is at least 2.
index (Variable): Tensor<int32>, index variable which is a 2-D tensor
with shape [M, 1] where M is the batch size.
inputs (list): ${x_comment}.
index (${ids_type}): ${ids_comment}.
Returns:
Variable: Multiplex variable gathered from input variables.
Examples:
.. code-block:: python
x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
index = fluid.layers.data(name='index', shape=[1], dtype='int32')
out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
${out_comment}.
"""
helper
=
LayerHelper
(
'multiplex'
,
**
locals
())
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
4970414b
...
...
@@ -40,8 +40,6 @@ __activations__ = [
'relu6'
,
'pow'
,
'stanh'
,
'hard_shrink'
,
'thresholded_relu'
,
'hard_sigmoid'
,
'swish'
,
]
...
...
@@ -64,11 +62,9 @@ __all__ = [
'logical_or'
,
'logical_xor'
,
'logical_not'
,
'uniform_random'
,
'uniform_random_batch_size_like'
,
'gaussian_random'
,
'gaussian_random_batch_size_like'
,
'cumsum'
,
'scatter'
,
'sum'
,
'slice'
,
...
...
@@ -79,3 +75,88 @@ __all__ = [
for
_OP
in
set
(
__all__
):
globals
()[
_OP
]
=
generate_layer_fn
(
_OP
)
__all__
+=
[
"uniform_random"
]
_uniform_random_
=
generate_layer_fn
(
'uniform_random'
)
def
uniform_random
(
shape
,
dtype
=
None
,
min
=
None
,
max
=
None
,
seed
=
None
):
kwargs
=
dict
()
for
name
in
locals
():
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
return
_uniform_random_
(
**
kwargs
)
uniform_random
.
__doc__
=
_uniform_random_
.
__doc__
+
"""
Examples:
>>> result = fluid.layers.uniform_random(shape=[32, 784])
"""
__all__
+=
[
'hard_shrink'
]
_hard_shrink_
=
generate_layer_fn
(
'hard_shrink'
)
def
hard_shrink
(
x
,
threshold
=
None
):
kwargs
=
dict
()
for
name
in
locals
():
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
return
_hard_shrink_
(
**
kwargs
)
hard_shrink
.
__doc__
=
_hard_shrink_
.
__doc__
+
"""
Examples:
>>> data = fluid.layers.data(name="input", shape=[784])
>>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
__all__
+=
[
'cumsum'
]
_cum_sum_
=
generate_layer_fn
(
'cumsum'
)
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
kwargs
=
dict
()
for
name
in
locals
():
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
return
_cum_sum_
(
**
kwargs
)
cumsum
.
__doc__
=
_cum_sum_
.
__doc__
+
"""
Examples:
>>> data = fluid.layers.data(name="input", shape=[32, 784])
>>> result = fluid.layers.cumsum(data, axis=0)
"""
__all__
+=
[
'thresholded_relu'
]
_thresholded_relu_
=
generate_layer_fn
(
'thresholded_relu'
)
def
thresholded_relu
(
x
,
threshold
=
None
):
kwargs
=
dict
()
for
name
in
locals
():
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
_thresholded_relu_
(
**
kwargs
)
thresholded_relu
.
__doc__
=
_thresholded_relu_
.
__doc__
+
"""
Examples:
>>> data = fluid.layers.data(name="input", shape=[1])
>>> result = fluid.layers.thresholded_relu(data, threshold=0.4)
"""
python/paddle/fluid/layers/tensor.py
浏览文件 @
4970414b
...
...
@@ -6,7 +6,7 @@
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# Unless
f
required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
...
...
@@ -51,7 +51,12 @@ def create_parameter(shape,
is_bias
=
False
,
default_initializer
=
None
):
"""
Create a parameter
Create a parameter. The parameter is a learnable variable, which can have
gradient, and can be optimized.
NOTE: this is a very low-level API. This API is useful when you create
operator by your self. instead of using layers.
Args:
shape(list[int]): shape of the parameter
dtype(string): element type of the parameter
...
...
@@ -63,7 +68,12 @@ def create_parameter(shape,
default_initializer(Initializer): initializer for the parameter
Returns:
Parameter: the created parameter
the created parameter.
Examples:
>>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
>>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
>>> hidden = fluid.layers.matmul(x=data, y=W)
"""
helper
=
LayerHelper
(
"create_parameter"
,
**
locals
())
if
attr
is
None
:
...
...
@@ -191,6 +201,7 @@ def assign(input, output):
Examples:
.. code-block:: python
out = fluid.layers.create_tensor(dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
fluid.layers.assign(hidden, out)
...
...
@@ -486,11 +497,27 @@ def save_combine(x, file_path, overwrite=True):
Saves a list of variables into a single file.
Args:
x(list): A list of Tensor/LoDTensor to be saved together in a single file.
x(list): A list of Tensor/LoDTensor variables to be saved together in
a single file.
file_path(str): The file path where variables will be saved.
overwrite(bool): Whether or not cover the given file when it has already
overwrite(bool): Whether or not cover the given file when it has already
existed. If it's set 'False' and the file is existed, a runtime
error will be thrown.
Returns:
There is no return value.
Examples:
.. code-block:: python
v1 = fluid.layers.data(name="data",
shape=(4, 6),
dtype="float32")
v2 = fluid.layers.data(name="data",
shape=(6, 8, 4),
dtype="float32")
normed = fluid.layers.save_combine([v1, v2], file_path="output")
"""
helper
=
LayerHelper
(
"save_combine"
,
**
locals
())
helper
.
append_op
(
...
...
python/paddle/fluid/tests/unittests/test_dist_train.py
浏览文件 @
4970414b
...
...
@@ -16,6 +16,7 @@ import os
import
time
import
unittest
from
multiprocessing
import
Process
import
signal
import
numpy
...
...
@@ -24,9 +25,6 @@ import paddle.fluid.layers as layers
class
TestSendOp
(
unittest
.
TestCase
):
@
unittest
.
skip
(
"This test is buggy. We cannot use time.sleep to sync processes, the connection may fail in unittest."
)
def
test_send
(
self
):
# Run init_serv in a thread
place
=
fluid
.
CPUPlace
()
...
...
@@ -35,7 +33,9 @@ class TestSendOp(unittest.TestCase):
p
.
daemon
=
True
p
.
start
()
time
.
sleep
(
10
)
self
.
ps_timeout
=
5
self
.
_wait_ps_ready
(
p
.
pid
)
with
open
(
"/tmp/paddle.%d.port"
%
p
.
pid
,
"r"
)
as
fn
:
selected_port
=
int
(
fn
.
readlines
()[
0
])
self
.
init_client
(
place
,
selected_port
)
...
...
@@ -44,9 +44,23 @@ class TestSendOp(unittest.TestCase):
self
.
assertTrue
(
numpy
.
allclose
(
self
.
local_out
,
self
.
dist_out
))
# FIXME(typhoonzero): find a way to gracefully shutdown the server.
os
.
system
(
"kill -9 %d"
%
p
.
pid
)
os
.
kill
(
p
.
pid
,
signal
.
SIGKILL
)
p
.
join
()
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
sleep_time
=
0.5
while
True
:
assert
start_left_time
>=
0
,
"wait ps ready failed"
time
.
sleep
(
sleep_time
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
start_left_time
-=
sleep_time
def
init_serv
(
self
,
place
):
main
=
fluid
.
Program
()
...
...
@@ -84,7 +98,10 @@ class TestSendOp(unittest.TestCase):
dtype
=
"float32"
,
persistable
=
False
,
shape
=
[
32
,
32
])
o
=
layers
.
Send
(
"127.0.0.1:%d"
%
port
,
[
x
],
[
get_var
])
fluid
.
initializer
.
Constant
(
value
=
2.3
)(
get_var
,
main
.
global_block
())
layers
.
Send
(
"127.0.0.1:%d"
%
port
,
[
x
])
o
=
layers
.
Recv
(
"127.0.0.1:%d"
%
port
,
[
get_var
])
exe
=
fluid
.
Executor
(
place
)
self
.
dist_out
=
exe
.
run
(
main
,
fetch_list
=
o
)
# o is a list
...
...
python/paddle/fluid/tests/unittests/test_initializer.py
浏览文件 @
4970414b
...
...
@@ -364,5 +364,22 @@ class TestMSRAInitializer(unittest.TestCase):
self
.
assertEqual
(
init_op
.
attr
(
'seed'
),
134
)
class
TestMSRAInitializer
(
unittest
.
TestCase
):
def
test_bilinear_initializer
(
self
):
"""Test the bilinear initializer with supplied arguments
"""
program
=
framework
.
Program
()
block
=
program
.
global_block
()
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
8
,
1
,
3
,
3
],
lod_level
=
0
,
name
=
"param"
,
initializer
=
initializer
.
BilinearInitializer
())
self
.
assertEqual
(
len
(
block
.
ops
),
1
)
init_op
=
block
.
ops
[
0
]
self
.
assertEqual
(
init_op
.
type
,
'assign_value'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
浏览文件 @
4970414b
...
...
@@ -57,17 +57,18 @@ class TestListenAndServOp(OpTest):
def
setUp
(
self
):
self
.
ps_timeout
=
5
self
.
ip
=
"127.0.0.1"
self
.
port
=
"
6173
"
self
.
port
=
"
0
"
self
.
trainers
=
1
self
.
trainer_id
=
1
self
.
trainer_id
=
0
def
_start_pserver
(
self
,
use_cuda
,
sync_mode
):
p
=
Process
(
target
=
run_pserver
,
args
=
(
use_cuda
,
sync_mode
,
self
.
ip
,
self
.
port
,
self
.
trainers
,
self
.
trainer_id
))
p
.
daemon
=
True
p
.
start
()
return
p
.
pid
return
p
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
...
...
@@ -89,18 +90,20 @@ class TestListenAndServOp(OpTest):
def
test_handle_signal_in_serv_op
(
self
):
# run pserver on CPU in sync mode
p
id
=
self
.
_start_pserver
(
False
,
True
)
self
.
_wait_ps_ready
(
pid
)
p
1
=
self
.
_start_pserver
(
False
,
True
)
self
.
_wait_ps_ready
(
p
1
.
p
id
)
# raise SIGTERM to pserver
os
.
kill
(
pid
,
signal
.
SIGTERM
)
os
.
kill
(
p1
.
pid
,
signal
.
SIGKILL
)
p1
.
join
()
# run pserver on CPU in async mode
p
id
=
self
.
_start_pserver
(
False
,
False
)
self
.
_wait_ps_ready
(
pid
)
p
2
=
self
.
_start_pserver
(
False
,
False
)
self
.
_wait_ps_ready
(
p
2
.
p
id
)
# raise SIGTERM to pserver
os
.
kill
(
pid
,
signal
.
SIGTERM
)
os
.
kill
(
p2
.
pid
,
signal
.
SIGKILL
)
p2
.
join
()
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
浏览文件 @
4970414b
...
...
@@ -173,6 +173,7 @@ class TestCRFModel(unittest.TestCase):
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
]))[
0
]
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_sparse_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
...
...
@@ -181,6 +182,7 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_dense_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
...
...
@@ -189,6 +191,7 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_sparse_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
...
...
@@ -197,6 +200,7 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
...
...
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
浏览文件 @
4970414b
...
...
@@ -157,9 +157,11 @@ class ControlFlowGraph(object):
if
op
.
type
()
==
"fill_constant"
and
op
.
attr
(
"force_cpu"
)
==
True
:
self
.
_skip_opt
.
update
(
op
.
output_arg_names
())
def
release_memory
(
self
):
def
release_memory
(
self
,
skip_opt_set
=
None
):
self
.
_dataflow_analyze
()
self
.
_update_skip_opt_set
()
if
skip_opt_set
:
self
.
_skip_opt
.
update
(
skip_opt_set
)
fwd_id
=
0
bwd_id
=
0
for
i
in
range
(
self
.
op_size
):
...
...
@@ -183,7 +185,7 @@ class ControlFlowGraph(object):
else
:
bwd_id
+=
1
def
memory_optimize
(
self
,
level
=
0
):
def
memory_optimize
(
self
,
skip_opt_set
=
None
,
level
=
0
):
def
compare_shape
(
x_shape
,
cache_shape
,
opt_level
):
if
opt_level
==
0
:
return
x_shape
==
cache_shape
...
...
@@ -200,6 +202,9 @@ class ControlFlowGraph(object):
self
.
_dataflow_analyze
()
self
.
_update_skip_opt_set
()
# update skip set to meet users' demand
if
skip_opt_set
:
self
.
_skip_opt
.
update
(
skip_opt_set
)
self
.
pool
=
[]
for
i
in
range
(
self
.
op_size
):
op
=
self
.
_ops
[
i
]
...
...
@@ -358,7 +363,7 @@ def _get_cfgs(input_program):
return
cfgs
def
memory_optimize
(
input_program
,
print_log
=
False
,
level
=
0
):
def
memory_optimize
(
input_program
,
skip_opt_set
=
None
,
print_log
=
False
,
level
=
0
):
"""Optimize memory by reusing var memory.
Note: it doesn't not support subblock nested in subblock.
...
...
@@ -374,10 +379,10 @@ def memory_optimize(input_program, print_log=False, level=0):
PRINT_LOG
=
print_log
cfgs
=
_get_cfgs
(
input_program
)
for
cfg
in
cfgs
:
cfg
.
memory_optimize
(
level
)
cfg
.
memory_optimize
(
skip_opt_set
=
skip_opt_set
,
level
=
level
)
def
release_memory
(
input_program
):
def
release_memory
(
input_program
,
skip_opt_set
=
None
):
cfgs
=
_get_cfgs
(
input_program
)
for
cfg
in
cfgs
:
cfg
.
release_memory
()
cfg
.
release_memory
(
skip_opt_set
=
skip_opt_set
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录