未验证 提交 49437f1a 编写于 作者: G Guo Sheng 提交者: GitHub

Merge pull request #6986 from guoshengCS/add-python-reduceMax-Min

Add python wrapper for reduce_max and reduce_min
...@@ -332,7 +332,19 @@ reduce_sum ...@@ -332,7 +332,19 @@ reduce_sum
reduce_mean reduce_mean
--------- -----------
.. autofunction:: paddle.v2.fluid.layers.reduce_mean .. autofunction:: paddle.v2.fluid.layers.reduce_mean
:noindex: :noindex:
reduce_max
----------
.. autofunction:: paddle.v2.fluid.layers.reduce_max
:noindex:
reduce_min
----------
.. autofunction:: paddle.v2.fluid.layers.reduce_min
:noindex:
...@@ -13,8 +13,8 @@ __all__ = [ ...@@ -13,8 +13,8 @@ __all__ = [
'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy', 'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy',
'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
'lstm_unit', 'reduce_sum', 'reduce_mean', 'sequence_first_step', 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min',
'sequence_last_step' 'sequence_first_step', 'sequence_last_step'
] ]
...@@ -1201,3 +1201,91 @@ def reduce_mean(input, dim=None, keep_dim=False): ...@@ -1201,3 +1201,91 @@ def reduce_mean(input, dim=None, keep_dim=False):
'reduce_all': True if dim == None else False 'reduce_all': True if dim == None else False
}) })
return out return out
def reduce_max(input, dim=None, keep_dim=False):
"""
Computes the maximum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int|None): The dimension along which the maximum is computed.
If :attr:`None`, compute the maximum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
fluid.layers.reduce_max(x) # [0.9]
fluid.layers.reduce_max(x, dim=0) # [0.2, 0.3, 0.6, 0.9]
fluid.layers.reduce_max(x, dim=-1) # [0.9, 0.7]
fluid.layers.reduce_max(x, dim=1, keep_dim=True) # [[0.9], [0.7]]
"""
helper = LayerHelper('reduce_max', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='reduce_max',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else 0,
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_min(input, dim=None, keep_dim=False):
"""
Computes the minimum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int|None): The dimension along which the minimum is computed.
If :attr:`None`, compute the minimum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
fluid.layers.reduce_min(x) # [0.1]
fluid.layers.reduce_min(x, dim=0) # [0.1, 0.2, 0.5, 0.7]
fluid.layers.reduce_min(x, dim=-1) # [0.2, 0.1]
fluid.layers.reduce_min(x, dim=1, keep_dim=True) # [[0.2], [0.1]]
"""
helper = LayerHelper('reduce_min', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='reduce_min',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else 0,
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册