Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
484cff6e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
484cff6e
编写于
3月 19, 2018
作者:
Y
Yang yaming
提交者:
GitHub
3月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #9204 from pkuyym/fix-9171
Enhance LoDResetOp and add python wrapper
上级
0821ee78
cd11b1bd
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
242 addition
and
55 deletion
+242
-55
paddle/fluid/operators/lod_reset_op.cc
paddle/fluid/operators/lod_reset_op.cc
+81
-31
paddle/fluid/operators/lod_reset_op.cu
paddle/fluid/operators/lod_reset_op.cu
+6
-2
paddle/fluid/operators/lod_reset_op.h
paddle/fluid/operators/lod_reset_op.h
+27
-16
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+98
-2
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+9
-0
python/paddle/fluid/tests/unittests/test_lod_reset_op.py
python/paddle/fluid/tests/unittests/test_lod_reset_op.py
+21
-4
未找到文件。
paddle/fluid/operators/lod_reset_op.cc
浏览文件 @
484cff6e
...
...
@@ -22,17 +22,16 @@ class LoDResetOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// input check
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of LoDResetOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of LoDResetOp should not be null."
);
// If target LoD is not set form Input(), then it must be set from Attr().
if
(
!
ctx
->
HasInput
(
"
TargetLoD
"
))
{
if
(
!
ctx
->
HasInput
(
"
Y
"
))
{
auto
level0
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"target_lod"
);
PADDLE_ENFORCE
(
level0
.
size
()
>
1
,
"Target LoD is not found, should be set to be a valid on
e "
"through Input() or Attr()
."
);
PADDLE_ENFORCE
_GT
(
level0
.
size
(),
1
,
"If Input(Y) not provided, the target lod should b
e "
"specified by attribute `target_lod`
."
);
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
}
...
...
@@ -50,36 +49,77 @@ class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LoDResetOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(LoDTensor) The input tensor of lod_reset operator."
);
AddInput
(
"TargetLoD"
,
"(Tensor, optional) The target level 0 LoD from Input()."
)
AddInput
(
"X"
,
"(Tensor, LoDTensor) Input variable of LoDResetOp which "
"could be a Tensor or LoDTensor, where the data of output "
"variable inherits from."
);
AddInput
(
"Y"
,
"(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
"lod of Input(Y) would be considered as the target lod first, "
"otherwise data of Input(Y) would be considered as the "
"target lod."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"(LoDTensor) The output tensor of lod_reset operator."
);
AddOutput
(
"Out"
,
"(LoDTensor) Output variable of LoDResetOp which should be a "
"LoDTensor."
);
AddAttr
<
std
::
vector
<
int
>>
(
"target_lod"
,
"The target level 0 LoD from Attr()."
)
.
SetDefault
(
std
::
vector
<
int
>
{});
AddComment
(
R"DOC(LoDReset operator
Reset LoD of Input(X) into a new one specified by Input(TargetLoD) or
Attr(target_lod), or set LoD for Input(X) if it doesn't have one.
Currently the lod_reset operator only supports the reset of level 0 LoD.
At least one of Input(TargetLoD) and Attr(target_lod) must be set,
and if both of them are set, Input(TargetLoD) will be chosen as the
target LoD.
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
Example 1:
Given a 1-level LoDTensor input(X):
X.lod = [[ 0, 2, 5 6 ]]
X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
X.dims = [6, 1]
attr(target_lod): [0, 4, 6]
then we get a 1-level LoDTensor:
Out.lod = [[ 0, 4, 6 ]]
Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
Out.dims = [6, 1]
Example 2:
An example:
Given a float LoDTensor X with shape (6, 1), its transpose form represents
Given a 1-level LoDTensor input(X):
X.lod = [[ 0, 2, 5 6 ]]
X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
X.dims = [6, 1]
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
input(Y) is a Tensor:
Y.data = [[0, 2, 6]]
Y.dims = [1, 3]
with LoD = [[0, 2, 5, 6]] and the three (transposed) sequences look like
then we get a 1-level LoDTensor:
Out.lod = [[ 0, 2, 6 ]]
Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
Out.dims = [6, 1]
[1.0, 2.0], [3.0, 4.0, 5.0], [6.0].
Example 3:
If target LoD = [0, 4, 6], the lod_reset operator will reset the LoD and
the sequences that the LoDTensor Output(Out) contains becomes:
Given a 1-level LoDTensor input(X):
X.lod = [[ 0, 2, 5 6 ]]
X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
X.dims = [6, 1]
[1.0, 2.0, 3.0, 4.0], [5.0, 6.0].
input(Y) is a 2-level LoDTensor:
Y.lod = [[0, 2, 4], [0, 2, 5, 6]]
Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
Y.dims = [6, 1]
then we get a 2-level LoDTensor:
Out.lod = [[0, 2, 4], [0, 2, 5, 6]]
Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
Out.dims = [6, 1]
)DOC"
);
}
...
...
@@ -90,10 +130,16 @@ class LoDResetGradOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of LoDResetGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
"Input(Out@Grad) of LoDResetGradOp should not be null."
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
x_grad_name
);
}
}
protected:
...
...
@@ -111,9 +157,13 @@ class LoDResetGradOp : public framework::OperatorWithKernel {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
lod_reset
,
ops
::
LoDResetOp
,
ops
::
LoDResetOpMaker
,
lod_reset_grad
,
ops
::
LoDResetGradOp
);
REGISTER_OP_CPU_KERNEL
(
lod_reset
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
lod_reset
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
lod_reset_grad
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/fluid/operators/lod_reset_op.cu
浏览文件 @
484cff6e
...
...
@@ -18,8 +18,12 @@ namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL
(
lod_reset
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LoDResetKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
lod_reset_grad
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/lod_reset_op.h
浏览文件 @
484cff6e
...
...
@@ -26,35 +26,46 @@ class LoDResetKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
lod_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"TargetLoD"
);
auto
*
lod_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
out
->
ShareDataWith
(
*
in
);
std
::
vector
<
int
>
level0
;
if
(
lod_t
)
{
auto
*
lod
=
lod_t
->
data
<
int
>
();
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
framework
::
Tensor
lod_cpu
;
framework
::
TensorCopy
(
*
lod_t
,
platform
::
CPUPlace
(),
ctx
.
device_context
(),
&
lod_cpu
);
lod
=
lod_cpu
.
data
<
int
>
();
if
(
lod_t
->
lod
().
size
()
>
0
)
{
auto
y_lod
=
lod_t
->
lod
();
auto
last_level
=
y_lod
[
y_lod
.
size
()
-
1
];
PADDLE_ENFORCE_EQ
(
last_level
.
back
(),
in
->
dims
()[
0
],
"Last value of `Y`'s last level LoD should be equal "
"to the first dimension of `X`"
);
out
->
set_lod
(
y_lod
);
return
;
// early return, since lod already set
}
else
{
auto
*
lod
=
lod_t
->
data
<
int
>
();
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
framework
::
Tensor
lod_cpu
;
framework
::
TensorCopy
(
*
lod_t
,
platform
::
CPUPlace
(),
ctx
.
device_context
(),
&
lod_cpu
);
lod
=
lod_cpu
.
data
<
int
>
();
}
level0
=
std
::
vector
<
int
>
(
lod
,
lod
+
lod_t
->
numel
());
}
level0
=
std
::
vector
<
int
>
(
lod
,
lod
+
lod_t
->
numel
());
}
else
{
level0
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"target_lod"
);
}
PADDLE_ENFORCE
(
level0
.
size
()
>
1UL
,
"The s
ize of target LoD should be greater than 1."
);
PADDLE_ENFORCE
(
level0
[
0
]
==
0
,
"Target LoD should be a vector starting from 0."
);
PADDLE_ENFORCE
(
level0
.
back
()
==
in
->
dims
()[
0
],
"Target LoD should be a vector end with the "
"first dimension of Input(X)."
);
PADDLE_ENFORCE
_GT
(
level0
.
size
(),
1UL
,
"S
ize of target LoD should be greater than 1."
);
PADDLE_ENFORCE
_EQ
(
level0
[
0
],
0
,
"Target LoD should be a vector starting from 0."
);
PADDLE_ENFORCE
_EQ
(
level0
.
back
(),
in
->
dims
()[
0
],
"Target LoD should be a vector end with the "
"first dimension of Input(X)."
);
for
(
size_t
i
=
0
;
i
<
level0
.
size
()
-
1
;
++
i
)
{
PADDLE_ENFORCE
(
level0
[
i
+
1
]
>
level0
[
i
],
"Target LoD should be an ascending vector."
);
}
out
->
ShareDataWith
(
*
in
);
// cast level0 to size_t
std
::
vector
<
size_t
>
ulevel0
(
level0
.
size
(),
0
);
std
::
transform
(
level0
.
begin
(),
level0
.
end
(),
ulevel0
.
begin
(),
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
484cff6e
...
...
@@ -73,6 +73,7 @@ __all__ = [
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'lod_reset'
,
]
...
...
@@ -2225,7 +2226,7 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None):
keep_dim (bool|False): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the
name(str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
...
...
@@ -2241,7 +2242,7 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_prod(x) # [0.0002268]
fluid.layers.reduce_prod(x, dim=0) # [0.02, 0.06, 0.3, 0.63]
fluid.layers.reduce_prod(x, dim=-1) # [0.027, 0.0084]
fluid.layers.reduce_prod(x, dim=1,
fluid.layers.reduce_prod(x, dim=1,
keep_dim=True) # [[0.027], [0.0084]]
"""
helper
=
LayerHelper
(
'reduce_prod'
,
**
locals
())
...
...
@@ -3292,3 +3293,98 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1):
counter
.
stop_gradient
=
True
return
counter
def
lod_reset
(
x
,
y
=
None
,
target_lod
=
None
):
"""
LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
**target_lod**. When **y** provided, **y.lod** would be considered as target
LoD first, otherwise **y.data** would be considered as target LoD. If **y**
is not provided, target LoD should be specified by **target_lod**.
If target LoD is specified by **Y.data** or **target_lod**, only one level
LoD is supported.
.. code-block:: text
* Example 1:
Given a 1-level LoDTensor x:
x.lod = [[ 0, 2, 5 6 ]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
target_lod: [0, 4, 6]
then we get a 1-level LoDTensor:
out.lod = [[ 0, 4, 6 ]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
out.dims = [6, 1]
* Example 2:
Given a 1-level LoDTensor x:
x.lod = [[ 0, 2, 5 6 ]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
y is a Tensor:
y.data = [[0, 2, 6]]
y.dims = [1, 3]
then we get a 1-level LoDTensor:
out.lod = [[ 0, 2, 6 ]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
out.dims = [6, 1]
* Example 3:
Given a 1-level LoDTensor x:
x.lod = [[ 0, 2, 5 6 ]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
y is a 2-level LoDTensor:
y.lod = [[0, 2, 4], [0, 2, 5, 6]]
y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
y.dims = [6, 1]
then we get a 2-level LoDTensor:
out.lod = [[0, 2, 4], [0, 2, 5, 6]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
out.dims = [6, 1]
Args:
x (Variable): Input variable which could be a Tensor or LodTensor.
y (Variable|None): If provided, output's LoD would be derived from y.
target_lod (list|tuple|None): One level LoD which should be considered
as target LoD when y not provided.
Returns:
Variable: Output variable with LoD specified by this operator.
Raises:
ValueError: If y and target_lod are both None.
Examples:
.. code-block:: python
x = layers.data(name='x', shape=[10])
y = layers.data(name='y', shape=[10, 20], lod_level=2)
out = layers.lod_reset(x=x, y=y)
"""
helper
=
LayerHelper
(
"lod_reset"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
if
y
is
not
None
:
helper
.
append_op
(
type
=
"lod_reset"
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
out
})
elif
target_lod
is
not
None
:
helper
.
append_op
(
type
=
"lod_reset"
,
inputs
=
{
'X'
:
x
},
attrs
=
{
'target_lod'
:
target_lod
},
outputs
=
{
'Out'
:
out
})
else
:
raise
ValueError
(
"y and target_lod should not be both None."
)
return
out
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
484cff6e
...
...
@@ -327,6 +327,15 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
loss
)
print
(
str
(
program
))
def
test_lod_reset
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
10
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
10
,
20
],
dtype
=
'float32'
,
lod_level
=
2
)
print
(
layers
.
lod_reset
(
x
=
x
,
y
=
y
))
print
(
str
(
program
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_lod_reset_op.py
浏览文件 @
484cff6e
...
...
@@ -42,7 +42,7 @@ class TestLodResetOpByInput(OpTest):
target_lod_0
=
[
0
,
4
,
7
,
10
]
self
.
inputs
=
{
'X'
:
(
x
,
lod
),
'
TargetLoD
'
:
np
.
array
([
target_lod_0
]).
astype
(
'int32'
)
'
Y
'
:
np
.
array
([
target_lod_0
]).
astype
(
'int32'
)
}
self
.
outputs
=
{
'Out'
:
(
x
,
[
target_lod_0
])}
...
...
@@ -50,7 +50,7 @@ class TestLodResetOpByInput(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
,
no_grad_set
=
set
(
"
TargetLoD
"
))
self
.
check_grad
([
"X"
],
"Out"
,
no_grad_set
=
set
(
"
Y
"
))
class
TestLodResetOpBoth
(
OpTest
):
...
...
@@ -62,7 +62,7 @@ class TestLodResetOpBoth(OpTest):
target_lod_0_in
=
[
0
,
4
,
7
,
10
]
self
.
inputs
=
{
'X'
:
(
x
,
lod
),
'
TargetLoD
'
:
np
.
array
(
target_lod_0_in
).
astype
(
'int32'
)
'
Y
'
:
np
.
array
(
target_lod_0_in
).
astype
(
'int32'
)
}
self
.
attrs
=
{
'target_lod'
:
target_lod_0_attr
}
self
.
outputs
=
{
'Out'
:
(
x
,
[
target_lod_0_in
])}
...
...
@@ -71,7 +71,24 @@ class TestLodResetOpBoth(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
,
no_grad_set
=
set
(
"TargetLoD"
))
self
.
check_grad
([
"X"
],
"Out"
,
no_grad_set
=
set
(
"Y"
))
class
TestLodResetOpYIsLoDTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"lod_reset"
x
=
np
.
random
.
random
((
10
,
20
)).
astype
(
"float32"
)
lod
=
[[
0
,
3
,
5
,
10
]]
y
=
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)
target_lod_0
=
[[
0
,
4
,
7
,
10
]]
self
.
inputs
=
{
'X'
:
(
x
,
lod
),
'Y'
:
(
y
,
target_lod_0
)}
self
.
outputs
=
{
'Out'
:
(
x
,
target_lod_0
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
,
no_grad_set
=
set
(
"Y"
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录