Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
47eb8691
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47eb8691
编写于
8月 29, 2017
作者:
T
Tao Luo
提交者:
GitHub
8月 29, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3571 from luotao1/huber_loss
refine Huber loss, add huber_regression_cost
上级
58419e7c
b709af61
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
289 addition
and
80 deletion
+289
-80
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+8
-3
paddle/gserver/layers/CostLayer.cpp
paddle/gserver/layers/CostLayer.cpp
+98
-41
paddle/gserver/layers/CostLayer.h
paddle/gserver/layers/CostLayer.h
+48
-17
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+20
-2
proto/ModelConfig.proto
proto/ModelConfig.proto
+3
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+12
-1
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+72
-8
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
..._helpers/tests/configs/protostr/test_cost_layers.protostr
+22
-5
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
.../trainer_config_helpers/tests/configs/test_cost_layers.py
+3
-1
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+3
-2
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
47eb8691
...
...
@@ -419,9 +419,14 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
huber_cost
----------
.. autoclass:: paddle.v2.layer.huber_cost
huber_regression_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost
:noindex:
huber_classification_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_classification_cost
:noindex:
lambda_cost
...
...
paddle/gserver/layers/CostLayer.cpp
浏览文件 @
47eb8691
...
...
@@ -572,13 +572,8 @@ void MultiBinaryLabelCrossEntropy::backwardImp(Matrix& output,
}
}
//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER
(
huber
,
HuberTwoClass
);
bool
HuberTwoClass
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
bool
HuberCost
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
CostLayer
::
init
(
layerMap
,
parameterMap
);
if
(
useGpu_
)
{
tmpCpuInput_
.
reserve
(
inputLayers_
.
size
());
...
...
@@ -589,7 +584,7 @@ bool HuberTwoClass::init(const LayerMap& layerMap,
return
true
;
}
void
Huber
TwoClass
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
{
void
Huber
Cost
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
{
if
(
useGpu_
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
tmpCpuInput_
[
i
].
resizeAndCopyFrom
(
...
...
@@ -597,13 +592,87 @@ void HuberTwoClass::forwardImp(Matrix& output, Argument& label, Matrix& cost) {
}
hl_stream_synchronize
(
HPPL_STREAM_DEFAULT
);
}
forwardImpIn
(
output
,
label
,
cost
);
}
void
HuberTwoClass
::
forwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
//
// Huber loss for robust regression.
//
REGISTER_LAYER
(
huber_regression
,
HuberRegressionLoss
);
bool
HuberRegressionLoss
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
HuberCost
::
init
(
layerMap
,
parameterMap
);
delta_
=
config_
.
delta
();
return
true
;
}
void
HuberRegressionLoss
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
HuberCost
::
forwardImp
(
output
,
label
,
target
);
size_t
numSamples
=
target
.
getHeight
();
size_t
dim
=
output
.
getWidth
();
CHECK
(
label
.
value
);
CHECK_EQ
((
*
label
.
value
).
getHeight
(),
numSamples
);
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
CHECK_EQ
(
dim
,
(
*
label
.
value
).
getWidth
());
CHECK_EQ
(
target
.
getWidth
(),
(
size_t
)
1
);
real
*
out
=
useGpu_
?
tmpCpuInput_
[
0
].
value
->
getData
()
:
output
.
getData
();
real
*
lbl
=
useGpu_
?
tmpCpuInput_
[
1
].
value
->
getData
()
:
(
*
label
.
value
).
getData
();
std
::
vector
<
real
>
cost
(
numSamples
,
0
);
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
int
index
=
i
*
dim
+
j
;
real
a
=
std
::
abs
(
lbl
[
index
]
-
out
[
index
]);
if
(
a
<=
delta_
)
cost
[
i
]
+=
a
*
a
/
2
;
else
cost
[
i
]
+=
delta_
*
(
a
-
delta_
/
2
);
}
}
target
.
copyFrom
(
cost
.
data
(),
numSamples
);
}
void
HuberRegressionLoss
::
backwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
size_t
numSamples
=
output
.
getHeight
();
size_t
dim
=
output
.
getWidth
();
real
*
out
=
useGpu_
?
tmpCpuInput_
[
0
].
value
->
getData
()
:
output
.
getData
();
real
*
lbl
=
useGpu_
?
tmpCpuInput_
[
1
].
value
->
getData
()
:
(
*
label
.
value
).
getData
();
real
*
grad
=
useGpu_
?
tmpCpuInput_
[
0
].
grad
->
getData
()
:
outputG
.
getData
();
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
int
index
=
i
*
dim
+
j
;
real
a
=
lbl
[
index
]
-
out
[
index
];
if
(
std
::
abs
(
a
)
<=
delta_
)
grad
[
index
]
+=
-
a
;
else
grad
[
index
]
+=
a
>
0
?
-
delta_
:
delta_
;
}
}
if
(
useGpu_
)
outputG
.
copyFrom
(
grad
,
numSamples
*
dim
);
}
//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER
(
huber_classification
,
HuberTwoClassification
);
bool
HuberTwoClassification
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
return
HuberCost
::
init
(
layerMap
,
parameterMap
);
}
void
HuberTwoClassification
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
HuberCost
::
forwardImp
(
output
,
label
,
target
);
size_t
numSamples
=
target
.
getHeight
();
CHECK
(
label
.
ids
);
CHECK_EQ
((
*
label
.
ids
).
getSize
(),
numSamples
);
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
CHECK_EQ
(
output
.
getWidth
(),
(
size_t
)
1
);
...
...
@@ -611,47 +680,35 @@ void HuberTwoClass::forwardImpIn(Matrix& output,
real
*
out
=
useGpu_
?
tmpCpuInput_
[
0
].
value
->
getData
()
:
output
.
getData
();
int
*
lbl
=
useGpu_
?
tmpCpuInput_
[
1
].
ids
->
getData
()
:
(
*
label
.
ids
).
getData
();
std
::
vector
<
real
>
cost
(
numSamples
);
std
::
vector
<
real
>
cost
(
numSamples
,
0
);
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
int
y
=
2
*
lbl
[
i
]
-
1
;
if
(
out
[
i
]
*
y
<
-
1
)
cost
[
i
]
=
-
4
*
out
[
i
]
*
y
;
else
if
(
out
[
i
]
*
y
<
1
)
cost
[
i
]
=
(
1
-
out
[
i
]
*
y
)
*
(
1
-
out
[
i
]
*
y
);
else
cost
[
i
]
=
0
;
real
a
=
out
[
i
]
*
y
;
if
(
a
<
-
1
)
cost
[
i
]
=
-
4
*
a
;
else
if
(
a
<
1
)
cost
[
i
]
=
(
1
-
a
)
*
(
1
-
a
);
}
target
.
copyFrom
(
cost
.
data
(),
numSamples
);
}
void
HuberTwoClass
::
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{
if
(
useGpu_
)
{
backwardImpIn
(
*
tmpCpuInput_
[
0
].
value
,
tmpCpuInput_
[
1
],
*
tmpCpuInput_
[
0
].
grad
);
outputGrad
.
copyFrom
(
*
tmpCpuInput_
[
0
].
grad
);
}
else
{
backwardImpIn
(
outputValue
,
label
,
outputGrad
);
}
}
void
HuberTwoClass
::
backwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
void
HuberTwoClassification
::
backwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
size_t
numSamples
=
output
.
getHeight
();
real
*
out
=
output
.
getData
();
real
*
grad
=
outputG
.
getData
();
int
*
lbl
=
(
*
label
.
ids
)
.
getData
();
real
*
out
=
useGpu_
?
tmpCpuInput_
[
0
].
value
->
getData
()
:
output
.
getData
();
int
*
lbl
=
useGpu_
?
tmpCpuInput_
[
1
].
ids
->
getData
()
:
(
*
label
.
ids
)
.
getData
();
real
*
grad
=
useGpu_
?
tmpCpuInput_
[
0
].
grad
->
getData
()
:
outputG
.
getData
();
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
int
y
=
2
*
lbl
[
i
]
-
1
;
if
(
y
*
out
[
i
]
<
-
1
)
real
a
=
out
[
i
]
*
y
;
if
(
a
<
-
1
)
grad
[
i
]
+=
-
4
*
y
;
else
if
(
y
*
out
[
i
]
<
1
)
grad
[
i
]
+=
-
2
*
(
1
-
y
*
out
[
i
]
)
*
y
;
else
if
(
a
<
1
)
grad
[
i
]
+=
-
2
*
(
1
-
a
)
*
y
;
}
if
(
useGpu_
)
outputG
.
copyFrom
(
grad
,
numSamples
);
}
/**
* This cost layer compute the sum of its input as loss.
* \f[
...
...
paddle/gserver/layers/CostLayer.h
浏览文件 @
47eb8691
...
...
@@ -304,37 +304,68 @@ public:
Matrix
&
outputGrad
)
override
;
};
/**
* Huber loss for robust 2-classes classification.
*
* For label={0, 1}, let y=2*label-1. Given output f, the loss is:
* \f[
* Loss =
* \left\{\begin{matrix}
* 4 * y * f & \textit{if} \ \ y* f < -1 \\
* (1 - y * f)^2 & \textit{if} \ \ -1 < y * f < 1 \\
* 0 & \textit{otherwise}
* \end{matrix}\right.
* \f]
/*
* A base layer for HuberRegressionLoss and HuberTwoClassification.
*/
class
HuberTwoClass
:
public
CostLayer
{
class
HuberCost
:
public
CostLayer
{
public:
std
::
vector
<
Argument
>
tmpCpuInput_
;
public:
explicit
HuberTwoClass
(
const
LayerConfig
&
config
)
:
CostLayer
(
config
)
{}
explicit
HuberCost
(
const
LayerConfig
&
config
)
:
CostLayer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
override
;
void
forwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
);
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{}
};
/**
* Huber loss for robust regression.
*
* Given output f(x), label y and delta, the loss is:
* Loss = 0.5 * (1 - y * f)^2, if abs(y - f) <= delta \\
* Loss = delta * abs(y - f) - 0.5 * delta^2, otherwise
*/
class
HuberRegressionLoss
:
public
HuberCost
{
public:
explicit
HuberRegressionLoss
(
const
LayerConfig
&
config
)
:
HuberCost
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
override
;
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
override
;
void
backwardImpIn
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
);
protected:
real
delta_
;
};
/**
* Huber loss for robust 2-classes classification.
*
* For label={0, 1}, let y=2*label-1. Given output f(x), the loss is:
* Loss = 4 * y * f, if y* f < -1 \\
* Loss = (1 - y * f)^2, if -1 < y * f < 1 \\
* Loss = 0, otherwise
*/
class
HuberTwoClassification
:
public
HuberCost
{
public:
explicit
HuberTwoClassification
(
const
LayerConfig
&
config
)
:
HuberCost
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
override
;
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
override
;
};
typedef
std
::
shared_ptr
<
CostLayer
>
CostLayerPtr
;
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
47eb8691
...
...
@@ -850,9 +850,27 @@ TEST(Layer, square_error_weighted) {
}
}
TEST
(
Layer
,
huber_regression_loss
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"huber_regression"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
delta
:
{
1
,
3
,
5
})
{
config
.
layerConfig
.
set_delta
(
delta
);
testLayerGrad
(
config
,
"huber_regression"
,
100
,
/* trans */
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
huber_two_class
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"huber"
);
config
.
layerConfig
.
set_type
(
"huber
_classification
"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
...
...
@@ -861,7 +879,7 @@ TEST(Layer, huber_two_class) {
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"huber"
,
100
,
/* trans */
false
,
useGpu
);
testLayerGrad
(
config
,
"huber
_two_class
"
,
100
,
/* trans */
false
,
useGpu
);
}
}
...
...
proto/ModelConfig.proto
浏览文件 @
47eb8691
...
...
@@ -499,6 +499,9 @@ message LayerConfig {
optional
int32
axis
=
54
[
default
=
2
];
repeated
uint32
offset
=
55
;
repeated
uint32
shape
=
56
;
// for HuberRegressionLoss
optional
double
delta
=
57
[
default
=
1.0
];
}
message
EvaluatorConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
47eb8691
...
...
@@ -2274,7 +2274,7 @@ define_cost('PnpairValidation', 'pnpair-validation')
define_cost
(
'SumOfSquaresCostLayer'
,
'square_error'
)
define_cost
(
'MultiBinaryLabelCrossEntropy'
,
'multi_binary_label_cross_entropy'
)
define_cost
(
'SoftBinaryClassCrossEntropy'
,
'soft_binary_class_cross_entropy'
)
define_cost
(
'HuberTwoClass
'
,
'huber
'
)
define_cost
(
'HuberTwoClass
ification'
,
'huber_classification
'
)
define_cost
(
'SumCost'
,
'sum_cost'
)
define_cost
(
'SmoothL1Cost'
,
'smooth_l1'
)
...
...
@@ -2336,6 +2336,17 @@ class LambdaCost(LayerBase):
self
.
config
.
max_sort_size
=
max_sort_size
@
config_layer
(
'huber_regression'
)
class
HuberRegressionLoss
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
delta
=
1.
,
coeff
=
1.
,
device
=
None
):
super
(
HuberRegressionLoss
,
self
).
__init__
(
name
,
'huber_regression'
,
1
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'HuberRegression must have 2 inputs'
)
self
.
config
.
delta
=
delta
self
.
config
.
coeff
=
coeff
@
config_layer
(
'nce'
)
class
NCELayer
(
LayerBase
):
def
__init__
(
self
,
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
47eb8691
...
...
@@ -110,7 +110,8 @@ __all__ = [
'sum_cost'
,
'rank_cost'
,
'lambda_cost'
,
'huber_cost'
,
'huber_regression_cost'
,
'huber_classification_cost'
,
'block_expand_layer'
,
'maxout_layer'
,
'out_prod_layer'
,
...
...
@@ -220,7 +221,8 @@ class LayerType(object):
RANK_COST
=
'rank-cost'
LAMBDA_COST
=
'lambda_cost'
HUBER
=
'huber'
HUBER_REGRESSION
=
'huber_regression'
HUBER_CLASSIFICATION
=
'huber_classification'
CROSS_ENTROPY
=
'multi-class-cross-entropy'
CROSS_ENTROPY_WITH_SELFNORM
=
'multi_class_cross_entropy_with_selfnorm'
SOFT_BIN_CLASS_CROSS_ENTROPY
=
'soft_binary_class_cross_entropy'
...
...
@@ -5644,16 +5646,77 @@ def sum_cost(input, name=None, layer_attr=None):
@
wrap_name_default
()
@
layer_support
()
def
huber_cost
(
input
,
label
,
name
=
None
,
coeff
=
1.0
,
layer_attr
=
None
):
def
huber_regression_cost
(
input
,
label
,
name
=
None
,
delta
=
1.0
,
coeff
=
1.0
,
layer_attr
=
None
):
"""
In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and :math:`\delta`, the loss function
is defined as:
.. math:
loss = 0.5*\left ( y-f(x)
\r
ight )^2, \left | y-f(x)
\r
ight |\leq \delta
loss = \delta \left | y-f(x)
\r
ight |-0.5\delta ^2, otherwise
The example usage is:
.. code-block:: python
cost = huber_regression_cost(input=input_layer, label=label_layer)
:param input: The first input layer.
:type input: LayerOutput.
:param label: The input label.
:type input: LayerOutput.
:param name: The name of this layers. It is not necessary.
:type name: None|basestring.
:param delta: The difference between the observed and predicted values.
:type delta: float.
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float.
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput.
"""
assert
isinstance
(
input
,
LayerOutput
)
Layer
(
name
=
name
,
type
=
LayerType
.
HUBER_REGRESSION
,
inputs
=
[
input
.
name
,
label
.
name
],
delta
=
delta
,
coeff
=
coeff
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
HUBER_REGRESSION
,
parents
=
[
input
,
label
],
size
=
1
)
@
wrap_name_default
()
@
layer_support
()
def
huber_classification_cost
(
input
,
label
,
name
=
None
,
coeff
=
1.0
,
layer_attr
=
None
):
"""
A loss layer for huber loss.
For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:`y\in \left \{-1, 1
\r
ight \}`, the modified Huber
loss is defined as:
.. math:
loss = \max \left ( 0, 1-yf(x)
\r
ight )^2, yf(x)\geq 1
loss = -4yf(x),
\t
ext{otherwise}
The example usage is:
.. code-block:: python
cost = huber_cost(input=input_layer,
label=label_layer)
cost = huber_classification_cost(input=input_layer, label=label_layer)
:param input: The first input layer.
:type input: LayerOutput.
...
...
@@ -5673,11 +5736,12 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
assert
input
.
size
==
1
Layer
(
name
=
name
,
type
=
LayerType
.
HUBER
,
type
=
LayerType
.
HUBER
_CLASSIFICATION
,
inputs
=
[
input
.
name
,
label
.
name
],
coeff
=
coeff
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
HUBER
,
parents
=
[
input
,
label
],
size
=
1
)
return
LayerOutput
(
name
,
LayerType
.
HUBER_CLASSIFICATION
,
parents
=
[
input
,
label
],
size
=
1
)
@
wrap_name_default
()
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
浏览文件 @
47eb8691
...
...
@@ -167,6 +167,20 @@ layers {
softmax_selfnorm_alpha: 0.1
coeff: 1.0
}
layers {
name: "__huber_regression_cost_0__"
type: "huber_regression"
size: 1
active_type: ""
inputs {
input_layer_name: "input"
}
inputs {
input_layer_name: "labels"
}
coeff: 1.0
delta: 1.0
}
layers {
name: "huber_probs"
type: "data"
...
...
@@ -180,8 +194,8 @@ layers {
active_type: ""
}
layers {
name: "__huber_cost_0__"
type: "huber"
name: "__huber_c
lassification_c
ost_0__"
type: "huber
_classification
"
size: 1
active_type: ""
inputs {
...
...
@@ -300,7 +314,8 @@ output_layer_names: "__rank_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__huber_regression_cost_0__"
output_layer_names: "__huber_classification_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__nce_layer_0__"
...
...
@@ -324,9 +339,10 @@ sub_models {
layer_names: "__lambda_cost_0__"
layer_names: "__cross_entropy_0__"
layer_names: "__cross_entropy_with_selfnorm_0__"
layer_names: "__huber_regression_cost_0__"
layer_names: "huber_probs"
layer_names: "huber_label"
layer_names: "__huber_cost_0__"
layer_names: "__huber_c
lassification_c
ost_0__"
layer_names: "__multi_binary_label_cross_entropy_0__"
layer_names: "__sum_cost_0__"
layer_names: "__nce_layer_0__"
...
...
@@ -349,7 +365,8 @@ sub_models {
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__huber_regression_cost_0__"
output_layer_names: "__huber_classification_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__nce_layer_0__"
...
...
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
浏览文件 @
47eb8691
...
...
@@ -33,7 +33,9 @@ outputs(
input
=
probs
,
label
=
xe_label
),
cross_entropy_with_selfnorm
(
input
=
probs
,
label
=
xe_label
),
huber_cost
(
huber_regression_cost
(
input
=
seq_in
,
label
=
labels
),
huber_classification_cost
(
input
=
data_layer
(
name
=
'huber_probs'
,
size
=
1
),
label
=
data_layer
(
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
47eb8691
...
...
@@ -141,12 +141,13 @@ class CostLayerTest(unittest.TestCase):
cost8
=
layer
.
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
layer
.
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost11
=
layer
.
huber_cost
(
input
=
score
,
label
=
label
)
cost11
=
layer
.
huber_regression_cost
(
input
=
score
,
label
=
label
)
cost12
=
layer
.
huber_classification_cost
(
input
=
score
,
label
=
label
)
print
layer
.
parse_network
([
cost1
,
cost2
])
print
layer
.
parse_network
([
cost3
,
cost4
])
print
layer
.
parse_network
([
cost5
,
cost6
])
print
layer
.
parse_network
([
cost7
,
cost8
,
cost9
,
cost10
,
cost11
])
print
layer
.
parse_network
([
cost7
,
cost8
,
cost9
,
cost10
,
cost11
,
cost12
])
crf
=
layer
.
crf
(
input
=
inference
,
label
=
label
)
crf_decoding
=
layer
.
crf_decoding
(
input
=
inference
,
size
=
3
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录