Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
477a6a09
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
477a6a09
编写于
9月 25, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine reduce_op, follow comments and remove ReduceGradEigenFreeKernel
上级
1295e5ef
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
38 addition
and
80 deletion
+38
-80
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+11
-5
paddle/operators/reduce_op.h
paddle/operators/reduce_op.h
+27
-75
未找到文件。
paddle/operators/reduce_op.cc
浏览文件 @
477a6a09
...
...
@@ -18,7 +18,6 @@ namespace paddle {
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
LoDTensor
;
class
ReduceOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -46,7 +45,11 @@ class ReduceOp : public framework::OperatorWithKernel {
dims_vector
.
erase
(
dims_vector
.
begin
()
+
dim
);
}
auto
out_dims
=
framework
::
make_ddim
(
dims_vector
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
out_dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
if
(
dim
!=
0
)
{
// Only pass LoD when not reducing on the first dim
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
};
...
...
@@ -81,9 +84,12 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input))"
)
AddAttr
<
int
>
(
"dim"
,
"(int, default 1) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)). "
"If `dim < 0`, the dim to reduce is `rank + dim`. "
"Noting that reducing on the first dim will make the LoD info lost."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default false) "
...
...
paddle/operators/reduce_op.h
浏览文件 @
477a6a09
...
...
@@ -80,6 +80,8 @@ struct MaxOrMinGradFunctor {
auto
equals
=
x
==
y
.
broadcast
(
dim
);
auto
ones
=
dx
.
constant
(
1
);
auto
zeros
=
dx
.
constant
(
0
);
// If there are multiple minimum or maximum elements, the subgradient of
// each is the set [0, 1], and we pass gradient to all of them here.
dx
.
device
(
place
)
=
dy
.
broadcast
(
dim
)
*
equals
.
select
(
ones
,
zeros
);
}
};
...
...
@@ -145,102 +147,52 @@ class ReduceGradKernel : public framework::OpKernel {
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
ReduceCompute
<
1
>
(
context
);
Reduce
Grad
Compute
<
1
>
(
context
);
break
;
case
2
:
ReduceCompute
<
2
>
(
context
);
Reduce
Grad
Compute
<
2
>
(
context
);
break
;
case
3
:
ReduceCompute
<
3
>
(
context
);
Reduce
Grad
Compute
<
3
>
(
context
);
break
;
case
4
:
ReduceCompute
<
4
>
(
context
);
Reduce
Grad
Compute
<
4
>
(
context
);
break
;
case
5
:
ReduceCompute
<
5
>
(
context
);
Reduce
Grad
Compute
<
5
>
(
context
);
break
;
case
6
:
ReduceCompute
<
6
>
(
context
);
Reduce
Grad
Compute
<
6
>
(
context
);
break
;
}
}
private:
template
<
size_t
D
>
void
ReduceCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
Reduce
Grad
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input1
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
input2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
output
!=
nullptr
)
{
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
*
input0
);
auto
x_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
output
);
auto
x_rank
=
static_cast
<
int
>
(
x
.
dimensions
().
size
());
int
dim
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
DDim
dims
=
input0
->
dims
();
dims
[
dim
]
=
1
;
auto
x_reduce
=
EigenTensor
<
T
,
D
>::
From
(
*
input1
,
dims
);
auto
x_reduce_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
input2
,
dims
);
Eigen
::
array
<
int
,
D
>
braodcast_dim
;
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
braodcast_dim
[
i
]
=
1
;
braodcast_dim
[
dim
]
=
input0
->
dims
()[
dim
];
auto
&
place
=
context
.
GetEigenDevice
<
Place
>
();
Functor
functor
;
functor
(
place
,
x
,
x_reduce
,
x_grad
,
x_reduce_grad
,
braodcast_dim
,
braodcast_dim
[
dim
]);
}
}
};
// For EigenTensor unsupported reduce
template
<
typename
T
,
typename
Functor
>
class
ReduceGradEigenFreeKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
if
(
x_grad
!=
nullptr
)
{
DDim
dims
=
x
->
dims
();
int
rank
=
dims
.
size
();
int
dim
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
rank
+
dim
;
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
x_grad_data
=
x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
out_data
=
out
->
data
<
T
>
();
auto
*
out_grad_data
=
out_grad
->
data
<
T
>
();
int
outer_count
=
1
;
int
inner_count
=
1
;
int
mid_count
=
dims
[
dim
];
for
(
int
i
=
0
;
i
<
dim
;
++
i
)
{
outer_count
*=
dims
[
i
];
}
for
(
int
i
=
dim
+
1
;
i
<
rank
;
++
i
)
{
inner_count
*=
dims
[
i
];
}
int
x_offset
=
0
;
// offset on raw data
int
out_offset
=
0
;
// offset on reduced data
Functor
functor
;
for
(
int
i
=
0
;
i
<
outer_count
;
++
i
)
{
for
(
int
j
=
0
;
j
<
inner_count
;
++
j
)
{
out_offset
=
inner_count
*
i
+
j
;
for
(
int
k
=
0
;
k
<
mid_count
;
++
k
)
{
x_offset
=
(
inner_count
*
mid_count
)
*
i
+
inner_count
*
k
+
j
;
functor
(
x_data
+
x_offset
,
out_data
+
out_offset
,
x_grad_data
+
x_offset
,
out_grad_data
+
out_offset
,
mid_count
);
}
}
}
}
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
*
input0
);
auto
x_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
output
);
auto
x_rank
=
static_cast
<
int
>
(
x
.
dimensions
().
size
());
int
dim
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
DDim
dims
=
input0
->
dims
();
dims
[
dim
]
=
1
;
auto
x_reduce
=
EigenTensor
<
T
,
D
>::
From
(
*
input1
,
dims
);
auto
x_reduce_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
input2
,
dims
);
Eigen
::
array
<
int
,
D
>
braodcast_dim
;
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
braodcast_dim
[
i
]
=
1
;
braodcast_dim
[
dim
]
=
input0
->
dims
()[
dim
];
auto
&
place
=
context
.
GetEigenDevice
<
Place
>
();
Functor
functor
;
functor
(
place
,
x
,
x_reduce
,
x_grad
,
x_reduce_grad
,
braodcast_dim
,
braodcast_dim
[
dim
]);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录