Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4702eb8c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4702eb8c
编写于
10月 10, 2018
作者:
Z
Zhang, Guoming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the shape issue on quantize op
上级
4ab641e2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
64 addition
and
42 deletion
+64
-42
calibration.py
calibration.py
+60
-41
paddle/fluid/operators/quantize_op.h
paddle/fluid/operators/quantize_op.h
+4
-1
未找到文件。
calibration.py
浏览文件 @
4702eb8c
...
...
@@ -176,7 +176,7 @@ def eval(args):
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
if
with_memory_optimization
:
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
...
...
@@ -197,7 +197,6 @@ def eval(args):
# sys.exit(0)
conv_op_index
=
[
index
for
index
,
value
in
enumerate
(
test_program
.
global_block
().
ops
)
if
value
.
type
==
'conv2d'
]
pooling_op_index
=
[
index
for
index
,
value
in
enumerate
(
test_program
.
global_block
().
ops
)
if
value
.
type
==
'pool2d'
]
print
(
conv_op_index
)
weights_var_name
=
[]
conv_input_var_name
=
[]
conv_output_var_name
=
[]
...
...
@@ -211,9 +210,8 @@ def eval(args):
conv_input_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
input
(
'X'
)[
0
])
conv_output_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
output
(
'Out'
)[
0
])
not_persistable_vars
=
(
i
for
i
in
test_program
.
list_vars
()
if
not
i
.
persistable
)
back_program
=
test_program
.
clone
()
for
i
in
not_persistable_vars
:
i
.
persistable
=
True
...
...
@@ -288,30 +286,31 @@ def eval(args):
feed
=
feeder
.
feed
(
data
))
break
int8_prog
=
test
_program
.
clone
()
for
index
,
value
in
enumerate
(
conv_op_index
[
1
:]):
# print index,conv_input_var_name[index], ["{}_scale.input.test".format(conv_input_var_name[index])]
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_in"
,
[
"{}_scale.input.test"
.
format
(
conv_input_var_name
[
index
])])
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_out"
,
[
"{}_scale.output.test"
.
format
(
conv_output_var_name
[
index
])])
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_weights"
,
[
"{}_scale.weights.test"
.
format
(
weights_var_name
[
index
])])
if
int8_prog
.
current_block
().
ops
[
value
].
desc
.
input
(
"ResidualData"
):
name
=
int8_prog
.
current_block
().
ops
[
value
].
desc
.
input
(
"ResidualData"
)[
0
]
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_in_eltwise"
,
[
"{}_scale.output.test"
.
format
(
name
)])
int8_prog
=
back
_program
.
clone
()
#
for index, value in enumerate(conv_op_index[1:]):
#
# print index,conv_input_var_name[index], ["{}_scale.input.test".format(conv_input_var_name[index])]
#
int8_prog.current_block().ops[value].desc.set_input("Scale_in", ["{}_scale.input.test".format(conv_input_var_name[index])])
#
int8_prog.current_block().ops[value].desc.set_input("Scale_out", ["{}_scale.output.test".format(conv_output_var_name[index])])
#
int8_prog.current_block().ops[value].desc.set_input("Scale_weights", ["{}_scale.weights.test".format(weights_var_name[index])])
#
if int8_prog.current_block().ops[value].desc.input("ResidualData"):
#
name = int8_prog.current_block().ops[value].desc.input("ResidualData")[0]
#
int8_prog.current_block().ops[value].desc.set_input("Scale_in_eltwise", ["{}_scale.output.test".format(name)])
quantize_pos
=
get_quantization_op_pos
(
int8_prog
)
conv2_quantize_tmp
=
int8_prog
.
current_block
().
create_var
(
name
=
"conv2_quantize_tmp"
,
dtype
=
"float32"
,
persistable
=
True
,
#shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
dtype
=
core
.
VarDesc
.
VarType
.
UINT8
,
# persistable=True,
# lod_level= 0,
# shape= shape
)
op
=
int8_prog
.
current_block
().
_insert_op
(
index
=
quantize_pos
[
0
],
index
=
quantize_pos
[
0
]
,
type
=
"quantize"
,
type
=
"quantize"
,
inputs
=
{
"Input"
:
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
-
1
].
output
(
'Out'
)[
0
],
"Scale"
:
"{}_scale.input.test"
.
format
(
conv_input_var_name
[
1
])},
...
...
@@ -321,33 +320,34 @@ def eval(args):
)
op
.
_set_attr
(
"data_format"
,
"NCHW"
)
op
.
_set_attr
(
"use_mkldnn"
,
1
)
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
+
1
].
desc
.
set_input
(
"Input"
,
[
"conv2_quantize_tmp"
])
for
i
in
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
+
2
:]:
if
i
.
type
==
'conv2d'
and
i
.
input
(
'Input'
)[
0
]
==
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
-
1
].
output
(
'Out'
)[
0
]:
i
.
desc
.
set_input
(
"Input"
,
[
"conv2_quantize_tmp"
])
dequantize_pos
=
get_dequantization_op_pos
(
int8_prog
)
dequantize_tmp_var
=
int8_prog
.
current_block
().
create_var
(
name
=
"dequantize_tmp_var"
,
dtype
=
"float32"
,
persistable
=
True
,
#shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
)
op
=
int8_prog
.
current_block
().
_insert_op
(
index
=
dequantize_pos
[
0
]
+
1
,
# int8_prog.current_block().ops[quantize_pos[0] + 1 ].desc.set_input("Input", ["conv2_quantize_tmp"])
# for i in int8_prog.current_block().ops[quantize_pos[0] + 2:]:
# if i.type == 'conv2d' and i.input('Input')[0] == int8_prog.current_block().ops[quantize_pos[0] + 1].output('Out')[0]:
# i.desc.set_input("Input", ["conv2_quantize_tmp"])
# dequantize_pos = get_dequantization_op_pos(int8_prog)
# dequantize_tmp_var = int8_prog.current_block().create_var(
# name="dequantize_tmp_var",
# dtype="float32",
# persistable=True,
# #shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
# )
# op = int8_prog.current_block()._insert_op(
# index=dequantize_pos[0] + 1,
type
=
"dequantize"
,
#
type= "dequantize",
inputs
=
{
"Input"
:
int8_prog
.
current_block
().
ops
[
dequantize_pos
[
0
]].
output
(
'Out'
)[
0
],
"Scale"
:
"{}_scale.output.test"
.
format
(
int8_prog
.
current_block
().
ops
[
dequantize_pos
[
0
]].
output
(
'Out'
)[
0
])},
#
inputs={"Input": int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0],
#
"Scale": "{}_scale.output.test".format( int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0])},
outputs
=
{
"Output"
:
dequantize_tmp_var
},
)
#
outputs={"Output": dequantize_tmp_var},
#
)
int8_prog
.
current_block
().
ops
[
dequantize_pos
[
0
]
+
2
].
desc
.
set_input
(
"X"
,
[
"dequantize_tmp_var"
])
#
int8_prog.current_block().ops[dequantize_pos[0] + 2].desc.set_input("X", ["dequantize_tmp_var"])
#Step 3 Save the new model
print
int8_prog
# for i in int8_prog.current_block().ops:
# print '********'
# print i
...
...
@@ -362,9 +362,28 @@ def eval(args):
# print k, i.output(k)[0]
# print conv_op_index
# print dequantize_pos
if
DEBUG
:
dot
(
int8_prog
)
# sys.exit(0)
# if DEBUG:
# dot(int8_prog)
# for i in int8_prog.current_block().ops:
# print i
for
batch_id
,
data
in
enumerate
(
val_reader
()):
loss
,
acc1
,
acc5
=
exe
.
run
(
int8_prog
,
fetch_list
=
fetch_list
,
feed
=
feeder
.
feed
(
data
))
loss
=
np
.
mean
(
loss
)
acc1
=
np
.
mean
(
acc1
)
acc5
=
np
.
mean
(
acc5
)
test_info
[
0
].
append
(
loss
*
len
(
data
))
test_info
[
1
].
append
(
acc1
*
len
(
data
))
test_info
[
2
].
append
(
acc5
*
len
(
data
))
cnt
+=
len
(
data
)
if
batch_id
%
10
==
0
:
print
(
"Testbatch {0},loss {1}, "
"acc1 {2},acc5 {3}"
.
format
(
batch_id
,
\
loss
,
acc1
,
acc5
))
sys
.
stdout
.
flush
()
break
with
open
(
"__model_quantized__"
,
"wb"
)
as
f
:
f
.
write
(
int8_prog
.
desc
.
serialize_to_string
())
...
...
paddle/fluid/operators/quantize_op.h
浏览文件 @
4702eb8c
...
...
@@ -28,7 +28,10 @@ class QuantOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
"Output"
,
ctx
->
GetInputDim
(
"Input"
));
ctx
->
ShareLoD
(
"Input"
,
/*->*/
"Output"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录