Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
46a73e64
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
46a73e64
编写于
1月 13, 2021
作者:
H
huangxu96
提交者:
GitHub
1月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add amp example document (#30315)
上级
428c884f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
128 addition
and
12 deletion
+128
-12
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+108
-11
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
+4
-1
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
+16
-0
未找到文件。
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
46a73e64
...
...
@@ -44,7 +44,7 @@ class OptimizerWithMixedPrecision(object):
Args:
optimizer (Optimizer): A common Optimizer object.
amp_lists (
AutoMixedPrecisionLists): An AutoMixedPrecision
Lists object.
amp_lists (
CustomOpLists): An CustomOp
Lists object.
init_loss_scaling (float): The initial loss scaling factor.
use_dynamic_loss_scaling (bool): Whether to use dynamic loss scaling.
incr_every_n_steps(int): Increases loss scaling every n consecutive
...
...
@@ -196,12 +196,56 @@ class OptimizerWithMixedPrecision(object):
Init the amp training, such as cast fp32 parameters to fp16 type.
Args:
place(C
PUPlace|CUDAPlace): place is used to initialize
place(C
UDAPlace): place is used to initialize
fp16 parameters with fp32 values.
scope(Scope): The scope is used to find fp32 parameters.
test_program(Program): The program is used for testing.
use_fp16_test(bool): Whether to use fp16 testing.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
paddle.enable_static()
def run_example_code():
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
# 1) Use fp16_guard to control the range of fp16 kernels used.
with paddle.static.amp.fp16_guard():
bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
pool = F.max_pool2d(bn, kernel_size=2, stride=2)
hidden = paddle.static.nn.fc(pool, size=10)
loss = paddle.mean(hidden)
# 2) Create the optimizer and set `multi_precision` to True.
# Setting `multi_precision` to True can avoid the poor accuracy
# or the slow convergence in a way.
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
# 3) These ops in `custom_black_list` will keep in the float32 computation type.
amp_list = paddle.static.amp.CustomOpLists(
custom_black_list=['pool2d'])
# 4) The entry of Paddle AMP.
# Enable pure fp16 training by setting `use_pure_fp16` to True.
optimizer = paddle.static.amp.decorate(
optimizer,
amp_list,
init_loss_scaling=128.0,
use_dynamic_loss_scaling=True,
use_pure_fp16=True)
# If you don't use the default_startup_program(), you sholud pass
# your defined `startup_program` into `minimize`.
optimizer.minimize(loss)
exe.run(paddle.static.default_startup_program())
# 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
# If you want to perform the testing process, you should pass `test_program` into `amp_init`.
optimizer.amp_init(place, scope=paddle.static.global_scope())
if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
run_example_code()
"""
assert
self
.
_train_program
is
not
None
,
\
"Please call the minimize method first."
...
...
@@ -383,7 +427,7 @@ def decorate(optimizer,
Args:
optimizer(Optimizer): A common Optimizer.
amp_lists (
AutoMixedPrecisionLists): An AutoMixedPrecision
Lists object.
amp_lists (
CustomOpLists): An CustomOp
Lists object.
init_loss_scaling(float): The initial loss scaling factor.
incr_every_n_steps(int): Increases loss scaling every n consecutive
steps with finite gradients.
...
...
@@ -403,17 +447,70 @@ def decorate(optimizer,
An optimizer acting like a normal one but with mixed-precision training
enabled.
Examples:
.. code-block:: python
Examples 1:
.. code-block:: python
# black&white list based strategy example
import paddle
import paddle.static as static
paddle.enable_static()
data = static.data(name='X', shape=[None, 1], dtype='float32')
hidden = static.nn.fc(x=data, size=10)
loss = paddle.mean(hidden)
optimizer = paddle.optimizer.Adam(learning_rate=0.001)
mp_optimizer = static.amp.decorate(
optimizer=optimizer, init_loss_scaling=8.0)
loss = network()
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
mp_optimizer = fluid.contrib.mixed_precision.decorate(
optimizer=optimizer, init_loss_scaling=8.0)
ops, param_grads = mp_optimizer.minimize(loss)
scaled_loss = mp_optimizer.get_scaled_loss()
Examples 2:
.. code-block:: python
# pure fp16 training example
import numpy as np
import paddle
import paddle.nn.functional as F
def run_example_code():
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
# 1) Use fp16_guard to control the range of fp16 kernels used.
with paddle.static.amp.fp16_guard():
bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
pool = F.max_pool2d(bn, kernel_size=2, stride=2)
hidden = paddle.static.nn.fc(pool, size=10)
loss = paddle.mean(hidden)
# 2) Create the optimizer and set `multi_precision` to True.
# Setting `multi_precision` to True can avoid the poor accuracy
# or the slow convergence in a way.
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
# 3) These ops in `custom_black_list` will keep in the float32 computation type.
amp_list = paddle.static.amp.CustomOpLists(
custom_black_list=['pool2d'])
# 4) The entry of Paddle AMP.
# Enable pure fp16 training by setting `use_pure_fp16` to True.
optimizer = paddle.static.amp.decorate(
optimizer,
amp_list,
init_loss_scaling=128.0,
use_dynamic_loss_scaling=True,
use_pure_fp16=True)
# If you don't use the default_startup_program(), you sholud pass
# your defined `startup_program` into `minimize`.
optimizer.minimize(loss)
exe.run(paddle.static.default_startup_program())
# 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
# If you want to perform the testing process, you should pass `test_program` into `amp_init`.
optimizer.amp_init(place, scope=paddle.static.global_scope())
if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
run_example_code()
"""
if
amp_lists
is
None
:
amp_lists
=
AutoMixedPrecisionLists
()
...
...
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
浏览文件 @
46a73e64
...
...
@@ -14,7 +14,7 @@
import
copy
__all__
=
[
"AutoMixedPrecisionLists"
]
__all__
=
[
"
CustomOpLists"
,
"
AutoMixedPrecisionLists"
]
class
AutoMixedPrecisionLists
(
object
):
...
...
@@ -27,6 +27,7 @@ class AutoMixedPrecisionLists(object):
Args:
custom_white_list (set): Users' custom white list.
custom_black_list (set): Users' custom black list.
custom_black_varnames (set): Users' custom black varibles' names.
"""
def
__init__
(
self
,
...
...
@@ -284,3 +285,5 @@ unsupported_fp16_list = {
'generate_proposal_labels'
,
'generate_mask_labels'
,
}
CustomOpLists
=
AutoMixedPrecisionLists
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
浏览文件 @
46a73e64
...
...
@@ -282,6 +282,22 @@ def fp16_guard():
As for the pure fp16 training, if users set `use_fp16_guard` to True,
only those ops created in the context manager `fp16_guard` will be
transformed as float16 type.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
paddle.enable_static()
data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
with paddle.static.amp.fp16_guard():
bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
pool = F.max_pool2d(bn, kernel_size=2, stride=2)
hidden = paddle.static.nn.fc(pool, size=10)
loss = paddle.mean(hidden)
"""
with
framework
.
name_scope
(
prefix
=
_fp16_guard_pattern
):
yield
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录