提交 46625415 编写于 作者: L lidanqing 提交者: Tao Luo

add Mobilienet ssd int8 analyzer tester (#18075)

* add pascalvoc preprocess script and mobilenet-ssd analyzer_tester, wait 17737

* change converting local dataset to downloading and converting tarfile
test=develop

* change the test data_path
test=develop

* change copyright (c) 2016 to copyright (c) 2019
test=develop
上级 8cf25c43
......@@ -23,11 +23,11 @@ function(inference_analysis_api_test target install_dir filename)
ARGS --infer_model=${install_dir}/model --infer_data=${install_dir}/data.txt)
endfunction()
function(inference_analysis_api_int8_test target model_dir data_dir filename)
function(inference_analysis_api_int8_test target model_dir data_path filename)
inference_analysis_test(${target} SRCS ${filename}
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} benchmark
ARGS --infer_model=${model_dir}/model
--infer_data=${data_dir}/data.bin
--infer_data=${data_path}
--warmup_batch_size=100
--batch_size=50
--paddle_num_threads=${CPU_NUM_THREADS_ON_CI}
......@@ -159,55 +159,70 @@ if(WITH_MKLDNN)
if (NOT EXISTS ${INT8_DATA_DIR})
inference_download_and_uncompress(${INT8_DATA_DIR} "${INFERENCE_URL}/int8" "imagenet_val_100_tail.tar.gz")
endif()
if (NOT EXISTS ${INT8_DATA_DIR}/pascalvoc_data.bin)
inference_download_and_uncompress(${INT8_DATA_DIR} "${INFERENCE_URL}/int8" "pascalvoc_val_200_head.tar.gz")
endif()
set(IMAGENET_DATA_PATH "${INT8_DATA_DIR}/data.bin")
set(PASCALVOC_DATA_PATH "${INT8_DATA_DIR}/pascalvoc_data.bin")
#resnet50 int8
set(INT8_RESNET50_MODEL_DIR "${INT8_DATA_DIR}/resnet50")
if (NOT EXISTS ${INT8_RESNET50_MODEL_DIR})
inference_download_and_uncompress(${INT8_RESNET50_MODEL_DIR} "${INFERENCE_URL}/int8" "resnet50_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#mobilenet int8
set(INT8_MOBILENET_MODEL_DIR "${INT8_DATA_DIR}/mobilenet")
if (NOT EXISTS ${INT8_MOBILENET_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENET_MODEL_DIR} "${INFERENCE_URL}/int8" "mobilenetv1_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#mobilenetv2 int8
set(INT8_MOBILENETV2_MODEL_DIR "${INT8_DATA_DIR}/mobilenetv2")
if (NOT EXISTS ${INT8_MOBILENETV2_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENETV2_MODEL_DIR} "${INFERENCE_URL}/int8" "mobilenet_v2_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenetv2 ${INT8_MOBILENETV2_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_mobilenetv2 ${INT8_MOBILENETV2_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#resnet101 int8
set(INT8_RESNET101_MODEL_DIR "${INT8_DATA_DIR}/resnet101")
if (NOT EXISTS ${INT8_RESNET101_MODEL_DIR})
inference_download_and_uncompress(${INT8_RESNET101_MODEL_DIR} "${INFERENCE_URL}/int8" "Res101_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_resnet101 ${INT8_RESNET101_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_resnet101 ${INT8_RESNET101_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#vgg16 int8
set(INT8_VGG16_MODEL_DIR "${INT8_DATA_DIR}/vgg16")
if (NOT EXISTS ${INT8_VGG16_MODEL_DIR})
inference_download_and_uncompress(${INT8_VGG16_MODEL_DIR} "${INFERENCE_URL}/int8" "VGG16_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_vgg16 ${INT8_VGG16_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_vgg16 ${INT8_VGG16_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#vgg19 int8
set(INT8_VGG19_MODEL_DIR "${INT8_DATA_DIR}/vgg19")
if (NOT EXISTS ${INT8_VGG19_MODEL_DIR})
inference_download_and_uncompress(${INT8_VGG19_MODEL_DIR} "${INFERENCE_URL}/int8" "VGG19_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_vgg19 ${INT8_VGG19_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_vgg19 ${INT8_VGG19_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#googlenet int8
set(INT8_GOOGLENET_MODEL_DIR "${INT8_DATA_DIR}/googlenet")
if (NOT EXISTS ${INT8_GOOGLENET_MODEL_DIR})
inference_download_and_uncompress(${INT8_GOOGLENET_MODEL_DIR} "${INFERENCE_URL}/int8" "GoogleNet_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_googlenet ${INT8_GOOGLENET_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL)
inference_analysis_api_int8_test(test_analyzer_int8_googlenet ${INT8_GOOGLENET_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc SERIAL)
#mobilenet-ssd int8 model
set(INT8_MOBILENET_SSD_MODEL_DIR "${INT8_DATA_DIR}/mobilenet-ssd")
if (NOT EXISTS ${INT8_MOBILENET_SSD_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENET_SSD_MODEL_DIR} "${INFERENCE_URL}/int8" "mobilenet_ssd_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet_ssd ${INT8_MOBILENET_SSD_MODEL_DIR} ${PASCALVOC_DATA_PATH} analyzer_int8_object_detection_tester.cc)
endif()
# bert, max_len=20, embedding_dim=128
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchIrOptim(true);
cfg->SwitchSpecifyInputNames(false);
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
cfg->EnableMKLDNN();
}
std::vector<size_t> ReadObjectsNum(std::ifstream &file, size_t offset,
int64_t total_images) {
std::vector<size_t> num_objects;
num_objects.resize(total_images);
file.clear();
file.seekg(offset);
file.read(reinterpret_cast<char *>(num_objects.data()),
total_images * sizeof(size_t));
if (file.eof()) LOG(ERROR) << "Reached end of stream";
if (file.fail()) throw std::runtime_error("Failed reading file.");
return num_objects;
}
template <typename T>
class TensorReader {
public:
TensorReader(std::ifstream &file, size_t beginning_offset, std::string name)
: file_(file), position(beginning_offset), name_(name) {}
PaddleTensor NextBatch(std::vector<int> shape, std::vector<size_t> lod) {
int numel =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
PaddleTensor tensor;
tensor.name = name_;
tensor.shape = shape;
tensor.dtype = GetPaddleDType<T>();
tensor.data.Resize(numel * sizeof(T));
if (lod.empty() == false) {
tensor.lod.clear();
tensor.lod.push_back(lod);
}
file_.seekg(position);
file_.read(reinterpret_cast<char *>(tensor.data.data()), numel * sizeof(T));
position = file_.tellg();
if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
if (file_.fail())
throw std::runtime_error(name_ + ": failed reading file.");
return tensor;
}
protected:
std::ifstream &file_;
size_t position;
std::string name_;
};
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs,
int32_t batch_size = FLAGS_batch_size, int process_images = 0) {
std::ifstream file(FLAGS_infer_data, std::ios::binary);
if (!file) {
FAIL() << "Couldn't open file: " << FLAGS_infer_data;
}
int64_t total_images{0};
file.read(reinterpret_cast<char *>(&total_images), sizeof(int64_t));
LOG(INFO) << "Total images in file: " << total_images;
size_t image_beginning_offset = static_cast<size_t>(file.tellg());
auto lod_offset_in_file =
image_beginning_offset + sizeof(float) * total_images * 3 * 300 * 300;
auto labels_beginning_offset =
lod_offset_in_file + sizeof(size_t) * total_images;
std::vector<size_t> lod_full =
ReadObjectsNum(file, lod_offset_in_file, total_images);
size_t sum_objects_num =
std::accumulate(lod_full.begin(), lod_full.end(), 0UL);
auto bbox_beginning_offset =
labels_beginning_offset + sizeof(int64_t) * sum_objects_num;
auto difficult_beginning_offset =
bbox_beginning_offset + sizeof(float) * sum_objects_num * 4;
TensorReader<float> image_reader(file, image_beginning_offset, "image");
TensorReader<int64_t> label_reader(file, labels_beginning_offset, "gt_label");
TensorReader<float> bbox_reader(file, bbox_beginning_offset, "gt_bbox");
TensorReader<int64_t> difficult_reader(file, difficult_beginning_offset,
"gt_difficult");
if (process_images == 0) process_images = total_images;
auto iterations_max = process_images / batch_size;
for (auto i = 0; i < iterations_max; i++) {
auto images_tensor = image_reader.NextBatch({batch_size, 3, 300, 300}, {});
std::vector<size_t> batch_lod(lod_full.begin() + i * batch_size,
lod_full.begin() + batch_size * (i + 1));
size_t batch_num_objects =
std::accumulate(batch_lod.begin(), batch_lod.end(), 0UL);
batch_lod.insert(batch_lod.begin(), 0UL);
for (auto it = batch_lod.begin() + 1; it != batch_lod.end(); it++) {
*it = *it + *(it - 1);
}
auto labels_tensor = label_reader.NextBatch(
{static_cast<int>(batch_num_objects), 1}, batch_lod);
auto bbox_tensor = bbox_reader.NextBatch(
{static_cast<int>(batch_num_objects), 4}, batch_lod);
auto difficult_tensor = difficult_reader.NextBatch(
{static_cast<int>(batch_num_objects), 1}, batch_lod);
inputs->emplace_back(std::vector<PaddleTensor>{
std::move(images_tensor), std::move(bbox_tensor),
std::move(labels_tensor), std::move(difficult_tensor)});
}
}
std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
const std::vector<std::vector<PaddleTensor>> &test_data,
int32_t num_images = FLAGS_warmup_batch_size) {
int test_data_batch_size = test_data[0][0].shape[0];
auto iterations_max = test_data.size();
PADDLE_ENFORCE(
static_cast<int32_t>(num_images) <= iterations_max * test_data_batch_size,
"The requested quantization warmup data size " +
std::to_string(num_images) + " is bigger than all test data size.");
PaddleTensor images;
images.name = "image";
images.shape = {num_images, 3, 300, 300};
images.dtype = PaddleDType::FLOAT32;
images.data.Resize(sizeof(float) * num_images * 3 * 300 * 300);
int batches = num_images / test_data_batch_size;
int batch_remain = num_images % test_data_batch_size;
size_t num_objects = 0UL;
std::vector<size_t> accum_lod;
accum_lod.push_back(0UL);
for (int i = 0; i < batches; i++) {
std::transform(test_data[i][1].lod[0].begin() + 1,
test_data[i][1].lod[0].end(), std::back_inserter(accum_lod),
[&num_objects](size_t lodtemp) -> size_t {
return lodtemp + num_objects;
});
num_objects += test_data[i][1].lod[0][test_data_batch_size];
}
if (batch_remain > 0) {
std::transform(test_data[batches][1].lod[0].begin() + 1,
test_data[batches][1].lod[0].begin() + batch_remain + 1,
std::back_inserter(accum_lod),
[&num_objects](size_t lodtemp) -> size_t {
return lodtemp + num_objects;
});
num_objects = num_objects + test_data[batches][1].lod[0][batch_remain];
}
PaddleTensor labels;
labels.name = "gt_label";
labels.shape = {static_cast<int>(num_objects), 1};
labels.dtype = PaddleDType::INT64;
labels.data.Resize(sizeof(int64_t) * num_objects);
labels.lod.push_back(accum_lod);
PaddleTensor bbox;
bbox.name = "gt_bbox";
bbox.shape = {static_cast<int>(num_objects), 4};
bbox.dtype = PaddleDType::FLOAT32;
bbox.data.Resize(sizeof(float) * num_objects * 4);
bbox.lod.push_back(accum_lod);
PaddleTensor difficult;
difficult.name = "gt_difficult";
difficult.shape = {static_cast<int>(num_objects), 1};
difficult.dtype = PaddleDType::INT64;
difficult.data.Resize(sizeof(int64_t) * num_objects);
difficult.lod.push_back(accum_lod);
size_t objects_accum = 0;
size_t objects_in_batch = 0;
for (int i = 0; i < batches; i++) {
objects_in_batch = test_data[i][1].lod[0][test_data_batch_size];
std::copy_n(static_cast<float *>(test_data[i][0].data.data()),
test_data_batch_size * 3 * 300 * 300,
static_cast<float *>(images.data.data()) +
i * test_data_batch_size * 3 * 300 * 300);
std::copy_n(static_cast<int64_t *>(test_data[i][1].data.data()),
objects_in_batch,
static_cast<int64_t *>(labels.data.data()) + objects_accum);
std::copy_n(static_cast<float *>(test_data[i][2].data.data()),
objects_in_batch * 4,
static_cast<float *>(bbox.data.data()) + objects_accum * 4);
std::copy_n(static_cast<int64_t *>(test_data[i][3].data.data()),
objects_in_batch,
static_cast<int64_t *>(difficult.data.data()) + objects_accum);
objects_accum = objects_accum + objects_in_batch;
}
size_t objects_remain = test_data[batches][1].lod[0][batch_remain];
std::copy_n(
static_cast<float *>(test_data[batches][0].data.data()),
batch_remain * 3 * 300 * 300,
static_cast<float *>(images.data.data()) + objects_accum * 3 * 300 * 300);
std::copy_n(static_cast<int64_t *>(test_data[batches][1].data.data()),
objects_remain,
static_cast<int64_t *>(labels.data.data()) + objects_accum);
std::copy_n(static_cast<float *>(test_data[batches][2].data.data()),
objects_remain * 4,
static_cast<float *>(bbox.data.data()) + objects_accum * 4);
std::copy_n(static_cast<int64_t *>(test_data[batches][3].data.data()),
objects_remain,
static_cast<int64_t *>(difficult.data.data()) + objects_accum);
objects_accum = objects_accum + objects_remain;
PADDLE_ENFORCE(
static_cast<size_t>(num_objects) == static_cast<size_t>(objects_accum),
"The requested num of objects " + std::to_string(num_objects) +
" is the same as objects_accum.");
auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(4);
(*warmup_data)[0] = std::move(images);
(*warmup_data)[1] = std::move(bbox);
(*warmup_data)[2] = std::move(labels);
(*warmup_data)[3] = std::move(difficult);
return warmup_data;
}
TEST(Analyzer_int8_mobilenet_ssd, quantization) {
AnalysisConfig cfg;
SetConfig(&cfg);
AnalysisConfig q_cfg;
SetConfig(&q_cfg);
// read data from file and prepare batches with test data
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
// prepare warmup batch from input data read earlier
// warmup batch size can be different than batch size
std::shared_ptr<std::vector<PaddleTensor>> warmup_data =
GetWarmupData(input_slots_all);
// configure quantizer
q_cfg.EnableMkldnnQuantizer();
q_cfg.mkldnn_quantizer_config();
std::unordered_set<std::string> quantize_operators(
{"conv2d", "depthwise_conv2d", "prior_box"});
q_cfg.mkldnn_quantizer_config()->SetEnabledOpTypes(quantize_operators);
q_cfg.mkldnn_quantizer_config()->SetWarmupData(warmup_data);
q_cfg.mkldnn_quantizer_config()->SetWarmupBatchSize(FLAGS_warmup_batch_size);
CompareQuantizedAndAnalysis(&cfg, &q_cfg, input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import xml.etree.ElementTree as ET
from PIL import Image
import numpy as np
import os
import sys
from paddle.dataset.common import download
import tarfile
import StringIO
import hashlib
import tarfile
DATA_URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar"
DATA_DIR = os.path.expanduser("~/.cache/paddle/dataset/pascalvoc/")
TAR_FILE = "VOCtest_06-Nov-2007.tar"
TAR_PATH = os.path.join(DATA_DIR, TAR_FILE)
RESIZE_H = 300
RESIZE_W = 300
mean_value = [127.5, 127.5, 127.5]
ap_version = '11point'
DATA_OUT = 'pascalvoc_full.bin'
DATA_OUT_PATH = os.path.join(DATA_DIR, DATA_OUT)
BIN_TARGETHASH = "f6546cadc42f5ff13178b84ed29b740b"
TAR_TARGETHASH = "b6e924de25625d8de591ea690078ad9f"
TEST_LIST_KEY = "VOCdevkit/VOC2007/ImageSets/Main/test.txt"
BIN_FULLSIZE = 5348678856
def preprocess(img):
img_width, img_height = img.size
img = img.resize((RESIZE_W, RESIZE_H), Image.ANTIALIAS)
img = np.array(img)
# HWC to CHW
if len(img.shape) == 3:
img = np.swapaxes(img, 1, 2)
img = np.swapaxes(img, 1, 0)
# RBG to BGR
img = img[[2, 1, 0], :, :]
img = img.astype('float32')
img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype('float32')
img -= img_mean
img = img * 0.007843
return img
def print_processbar(done_percentage):
done_filled = done_percentage * '='
empty_filled = (100 - done_percentage) * ' '
sys.stdout.write("\r[%s%s]%d%%" %
(done_filled, empty_filled, done_percentage))
sys.stdout.flush()
def convert_pascalvoc(tar_path, data_out_path):
print("Start converting ...\n")
images = {}
gt_labels = {}
boxes = []
lbls = []
difficults = []
object_nums = []
# map label to number (index)
label_list = [
"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
"car", "cat", "chair", "cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant", "sheep", "sofa", "train",
"tvmonitor"
]
print_processbar(0)
#read from tar file and write to bin
tar = tarfile.open(tar_path, "r")
f_test = tar.extractfile(TEST_LIST_KEY).read()
lines = f_test.split('\n')
del lines[-1]
line_len = len(lines)
per_percentage = line_len / 100
f1 = open(data_out_path, "w+b")
f1.seek(0)
f1.write(np.array(line_len).astype('int64').tobytes())
for tarInfo in tar:
if tarInfo.isfile():
tmp_filename = tarInfo.name
name_arr = tmp_filename.split('/')
name_prefix = name_arr[-1].split('.')[0]
if name_arr[-2] == 'JPEGImages' and name_prefix in lines:
images[name_prefix] = tar.extractfile(tarInfo).read()
if name_arr[-2] == 'Annotations' and name_prefix in lines:
gt_labels[name_prefix] = tar.extractfile(tarInfo).read()
for line_idx, name_prefix in enumerate(lines):
im = Image.open(StringIO.StringIO(images[name_prefix]))
if im.mode == 'L':
im = im.convert('RGB')
im_width, im_height = im.size
im = preprocess(im)
np_im = np.array(im)
f1.write(np_im.astype('float32').tobytes())
# layout: label | xmin | ymin | xmax | ymax | difficult
bbox_labels = []
root = ET.fromstring(gt_labels[name_prefix])
objects = root.findall('object')
objects_size = len(objects)
object_nums.append(objects_size)
for object in objects:
bbox_sample = []
bbox_sample.append(
float(label_list.index(object.find('name').text)))
bbox = object.find('bndbox')
difficult = float(object.find('difficult').text)
bbox_sample.append(float(bbox.find('xmin').text) / im_width)
bbox_sample.append(float(bbox.find('ymin').text) / im_height)
bbox_sample.append(float(bbox.find('xmax').text) / im_width)
bbox_sample.append(float(bbox.find('ymax').text) / im_height)
bbox_sample.append(difficult)
bbox_labels.append(bbox_sample)
bbox_labels = np.array(bbox_labels)
if len(bbox_labels) == 0: continue
lbls.extend(bbox_labels[:, 0])
boxes.extend(bbox_labels[:, 1:5])
difficults.extend(bbox_labels[:, -1])
if line_idx % per_percentage:
print_processbar(line_idx / per_percentage)
f1.write(np.array(object_nums).astype('uint64').tobytes())
f1.write(np.array(lbls).astype('int64').tobytes())
f1.write(np.array(boxes).astype('float32').tobytes())
f1.write(np.array(difficults).astype('int64').tobytes())
f1.close()
print_processbar(100)
print("Conversion finished!\n")
def download_pascalvoc(data_url, data_dir, tar_targethash, tar_path):
print("Downloading pascalvcoc test set...")
download(data_url, data_dir, tar_targethash)
if not os.path.exists(tar_path):
print("Failed in downloading pascalvoc test set. URL %s\n" % data_url)
else:
tmp_hash = hashlib.md5(open(tar_path, 'rb').read()).hexdigest()
if tmp_hash != tar_targethash:
print("Downloaded test set is broken, removing ...\n")
else:
print("Downloaded successfully. Path: %s\n" % tar_path)
def run_convert():
try_limit = 2
retry = 0
while not (os.path.exists(DATA_OUT_PATH) and
os.path.getsize(DATA_OUT_PATH) == BIN_FULLSIZE and BIN_TARGETHASH
== hashlib.md5(open(DATA_OUT_PATH, 'rb').read()).hexdigest()):
if os.path.exists(DATA_OUT_PATH):
sys.stderr.write(
"The existing binary file is broken. It is being removed...\n")
os.remove(DATA_OUT_PATH)
if retry < try_limit:
retry = retry + 1
else:
download_pascalvoc(DATA_URL, DATA_DIR, TAR_TARGETHASH, TAR_PATH)
convert_pascalvoc(TAR_PATH, DATA_OUT_PATH)
print("Success! \nThe binary file can be found at %s\n" % DATA_OUT_PATH)
if __name__ == "__main__":
run_convert()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册