Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
45eabb8c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
45eabb8c
编写于
11月 03, 2017
作者:
C
Cao Ying
提交者:
Yi Wang
11月 03, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add the crf_decoding operator. (#5352)
* proj init. * add unittest and implementation.
上级
b0b26dab
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
447 addition
and
36 deletion
+447
-36
paddle/operators/crf_decoding_op.cc
paddle/operators/crf_decoding_op.cc
+136
-0
paddle/operators/crf_decoding_op.h
paddle/operators/crf_decoding_op.h
+127
-0
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+3
-2
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+33
-32
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+2
-2
python/paddle/v2/framework/tests/test_crf_decoding_op.py
python/paddle/v2/framework/tests/test_crf_decoding_op.py
+146
-0
未找到文件。
paddle/operators/crf_decoding_op.cc
0 → 100644
浏览文件 @
45eabb8c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/crf_decoding_op.h"
namespace
paddle
{
namespace
operators
{
class
CRFDecodingOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
CRFDecodingOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Emission"
,
"(LoDTensor, default: LoDTensor<float>). A LoDTensor with shape "
"[N x D] where N is the size of the mini-batch and D is the total "
"tag number. This input is the unscaled emission weight matrix of "
"the linear_chain_crf operator."
);
AddInput
(
"Transition"
,
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"This input is the transition weights learned by the linear_chain_crf "
"operator, denoted as w. The 1st row of w are transition weights for "
"the start mask. The 2nd row of w are transition weights for the end "
"mask. Transition weights between other tags begin from the 3rd row of "
"w. See more details in comments of the linear_chain_crf operator."
);
AddInput
(
"Label"
,
"(LoDTensor, LoDTensor<int>). The ground truth with shape "
"[N x 1]. This input is optional. See more details in the operator's "
"comments."
)
.
AsDispensable
();
AddOutput
(
"ViterbiPath"
,
"(LoDTensor, LoDTensor<int>). The decoding results. What to "
"return changes depending on whether the Input(Label) (the groud "
"truth) is given. See more details in the operator's comment."
);
AddComment
(
R"DOC(
The crf_decoding operator reads the emission feature weights and the transition
freature weights learned by the linear_chain_crf operator. It implements the
Viterbi algorithm which is a dynamic programming algorithm for finding the most
likely sequence of hidden states, called the Viterbi path, that results in a
sequence of observed tags.
The output of this operator changes according to whether Input(Label) is given:
1. Input(Label) is given:
This happens in training. This operator is used to co-work with the chunk_eval
operator.
When Input(Label) is given, the crf_decoding operator returns a row vector
with shape [N x 1] whose values are fixed to be 0, indicating an incorrect
prediction, or 1 indicating a tag is correctly predicted. Such an ouput is the
input to chunk_eval operator.
2. Input(Label) is not given:
This is the standard decoding process.
The crf_decoding operator returns a row vecotr with shape [N x 1] whose values
range from 0 to maximum tag number - 1. Each element indicates an index of a
predicted tag.
)DOC"
);
}
};
class
CRFDecodingOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Emission"
),
"Input(Emission) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Transition"
),
"Input(Transition) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ViterbiPath"
),
"Output(ViterbiPath) should be not null."
);
auto
emission_dims
=
ctx
->
GetInputDim
(
"Emission"
);
PADDLE_ENFORCE_EQ
(
emission_dims
.
size
(),
2UL
,
"The Input(Emission) should be a 2-D tensor."
);
PADDLE_ENFORCE
(
emission_dims
[
0
],
"An empty mini-batch is not allowed."
);
auto
transition_dims
=
ctx
->
GetInputDim
(
"Transition"
);
PADDLE_ENFORCE_EQ
(
transition_dims
.
size
(),
2UL
,
"The Input(Transition) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_dims
[
0
]
-
2
,
transition_dims
[
1
],
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [(D + 2) x D]."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
1
],
transition_dims
[
1
],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number."
);
if
(
ctx
->
HasInput
(
"Label"
))
{
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
0
],
label_dims
[
0
],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same."
);
}
ctx
->
ShareLoD
(
"Emission"
,
/*->*/
"ViterbiPath"
);
ctx
->
SetOutputDim
(
"ViterbiPath"
,
{
emission_dims
[
0
],
1
});
}
protected:
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
)
->
type
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
crf_decoding
,
ops
::
CRFDecodingOp
,
ops
::
CRFDecodingOpMaker
);
REGISTER_OP_CPU_KERNEL
(
crf_decoding
,
ops
::
CRFDecodingOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
CRFDecodingOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/crf_decoding_op.h
0 → 100644
浏览文件 @
45eabb8c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
using
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
CRFDecodingOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"The crf_decoding operator can only run on CPU."
);
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
decoded_path
=
ctx
.
Output
<
Tensor
>
(
"ViterbiPath"
);
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
auto
lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Emission) must be a sequence."
);
const
size_t
level
=
0
;
const
size_t
seq_num
=
lod
[
level
].
size
()
-
1
;
int
*
path
=
decoded_path
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
int
>
()(
ctx
.
device_context
(),
decoded_path
,
0
);
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
Tensor
decoded_path_one_seq
=
decoded_path
->
Slice
(
start_pos
,
end_pos
);
Decode
(
emission_weights
->
Slice
(
start_pos
,
end_pos
),
*
transition_weights
,
&
decoded_path_one_seq
);
}
if
(
label
)
{
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
int
*
label_value
=
label
->
data
<
int
>
();
size_t
batch_size
=
emission_weights
->
dims
()[
0
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
path
[
i
]
=
label_value
[
i
]
==
path
[
i
]
?
1
:
0
;
}
}
}
private:
void
Decode
(
const
Tensor
&
emission_weights
,
const
Tensor
&
transition_weights
,
Tensor
*
decoded_path
)
const
{
auto
emission_dims
=
emission_weights
.
dims
();
const
size_t
seq_len
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
const
T
*
x
=
emission_weights
.
data
<
T
>
();
const
T
*
w
=
transition_weights
.
data
<
T
>
();
int
*
path
=
decoded_path
->
data
<
int
>
();
// alpha is a memo table. An element alpha(k, v) records the score of the
// best sequence of tags from position 1 to position k with v being the end
// tag.
Tensor
alpha
;
T
*
alpha_value
=
alpha
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
Tensor
track
;
int
*
track_value
=
track
.
mutable_data
<
int
>
(
emission_dims
,
platform
::
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
alpha_value
[
i
]
=
w
[
i
]
+
x
[
i
];
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_j
=
0
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
T
score
=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
+
w
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
if
(
score
>
max_score
)
{
max_score
=
score
;
max_j
=
j
;
}
}
alpha_value
[
k
*
tag_num
+
i
]
=
max_score
+
x
[
k
*
tag_num
+
i
];
track_value
[
k
*
tag_num
+
i
]
=
max_j
;
}
}
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_i
=
0
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
score
=
alpha_value
[(
seq_len
-
1
)
*
tag_num
+
i
]
+
w
[
tag_num
+
i
];
if
(
score
>
max_score
)
{
max_score
=
score
;
max_i
=
i
;
}
}
path
[
seq_len
-
1
]
=
max_i
;
for
(
int
k
=
seq_len
-
1
;
k
>=
1
;
--
k
)
{
path
[
k
-
1
]
=
max_i
=
track_value
[
k
*
tag_num
+
max_i
];
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/cross_entropy_op.cc
浏览文件 @
45eabb8c
...
...
@@ -49,7 +49,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
}
protected:
// Explicitly set that
data type of the output of the cross_entropy operator
// Explicitly set that
the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -96,7 +96,8 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
}
protected:
// CrossEntropy's data type just determined by "X"
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
());
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
45eabb8c
...
...
@@ -22,43 +22,44 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
LinearChainCRFOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Emission"
,
"(LoDTensor, default: LoDTensor<float>). "
"The unscaled emission weight matrix for the linear chain CRF. "
"This input is a LoDTensor with shape [N x D] where N is the size of "
"the mini-batch and D is the total tag number."
);
AddInput
(
"Transition"
,
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"The learnable parameter for the linear_chain_crf operator. "
"See more details in the operator's comments."
);
AddInput
(
"Label"
,
"(LoDTensor, default: LoDTensor<int>). The ground truth which is a 2-D "
"LoDTensor with shape [N x 1], where N is the total element number in "
"a mini-batch."
);
AddInput
(
"Emission"
,
"(LoDTensor, default: LoDTensor<float>). "
"A 2-D LoDTensor with shape [N x D] where N is the size of the "
"mini-batch and D is the total tag number. The unscaled emission "
"weight matrix for the linear chain CRF. "
);
AddInput
(
"Transition"
,
"(Tensor, default: Tensor<float>). A 2-D Tensor with shape "
"[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
"operator. See more details in the operator's comments."
);
AddInput
(
"Label"
,
"(LoDTensor, default: LoDTensor<int>). A LoDTensor with shape "
"[N x 1], where N is the total element number in a mini-batch. "
"The ground truth."
);
AddOutput
(
"Alpha"
,
"
Tensor, default: Tensor<float>. The forward vectors for the entire
"
"
batch. A two dimensional tensor with shape [N x D],
"
"
denoted as
\f
$
\a
lpha
\f
$.
\f
$
\a
lpha$
\f
is a memo table used to
"
"
calculate the normalization factor in CRF.
\f
$
\a
lpha[k, v]$
\f
stores
"
"
the unnormalized probabilites of all possible unfinished sequences of
"
"
tags that end at
position
\f
$k$
\f
with tag
\f
$v$
\f
. For each
\f
$k$
\f
, "
"
(Tensor, default: Tensor<float>). A 2-D Tensor with shape [N x D].
"
"
The forward vectors for the entire batch. Denote it as
\f
$
\a
lpha
\f
$.
"
"
\f
$
\a
lpha$
\f
is a memo table used to calculate the normalization
"
"
factor in CRF.
\f
$
\a
lpha[k, v]$
\f
stores the unnormalized
"
"
probabilites of all possible unfinished sequences of tags that end at
"
"position
\f
$k$
\f
with tag
\f
$v$
\f
. For each
\f
$k$
\f
, "
"
\f
$
\a
lpha[k, v]$
\f
is a vector of length
\f
$D$
\f
with a component for "
"each tag value
\f
$v$
\f
. This vector is called a forward vecotr and "
"will also be used in backward computations."
)
.
AsIntermediate
();
AddOutput
(
"EmissionExps"
,
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation."
)
AddOutput
(
"EmissionExps"
,
"(Tensor, default: Tensor<float>). A 2-D Tensor with shape [N x D]. "
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused in "
"backward computation."
)
.
AsIntermediate
();
AddOutput
(
"TransitionExps"
,
"The exponentials of Input(Transition). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation."
)
AddOutput
(
"TransitionExps"
,
"(Tensor, default: Tensor<float>). A 2-D Tensor with shape "
"[(D + 2) x D]. The exponentials of Input(Transition). This is an "
"intermediate computational result in forward computation, and "
"will be reused in backward computation."
)
.
AsIntermediate
();
AddOutput
(
"LogLikelihood"
,
...
...
@@ -179,8 +180,8 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
}
protected:
// Explicitly set that the data type of
output of the
linear_chain_crf
//
operator
is determined by its input "Emission".
// Explicitly set that the data type of
computation kernel of
linear_chain_crf
// is determined by its input "Emission".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
)
->
type
());
...
...
paddle/operators/linear_chain_crf_op.h
浏览文件 @
45eabb8c
...
...
@@ -134,7 +134,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
Tensor
emission_row_max
;
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
framework
::
make_ddim
({
static_cast
<
int
64_t
>
(
batch_size
),
1
}),
platform
::
CPUPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
...
...
@@ -273,7 +273,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
const
int
*
lbl
=
label
.
data
<
int
>
();
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
static_cast
<
size_t
>
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
)
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
...
...
python/paddle/v2/framework/tests/test_crf_decoding_op.py
0 → 100644
浏览文件 @
45eabb8c
import
unittest
import
random
import
numpy
as
np
from
op_test
import
OpTest
class
CRFDecoding
(
object
):
def
__init__
(
self
,
emission_weights
,
transition_weights
,
seq_start_positions
):
assert
(
emission_weights
.
shape
[
0
]
==
seq_start_positions
[
-
1
])
self
.
tag_num
=
emission_weights
.
shape
[
1
]
self
.
seq_num
=
len
(
seq_start_positions
)
-
1
self
.
seq_start_positions
=
seq_start_positions
self
.
x
=
emission_weights
self
.
a
=
transition_weights
[
0
,
:]
self
.
b
=
transition_weights
[
1
,
:]
self
.
w
=
transition_weights
[
2
:,
:]
self
.
track
=
np
.
zeros
(
(
seq_start_positions
[
-
1
],
self
.
tag_num
),
dtype
=
"int32"
)
self
.
decoded_path
=
np
.
zeros
(
(
seq_start_positions
[
-
1
],
1
),
dtype
=
"int32"
)
def
_decode_one_sequence
(
self
,
decoded_path
,
x
):
seq_len
,
tag_num
=
x
.
shape
alpha
=
np
.
zeros
((
seq_len
,
tag_num
),
dtype
=
"float64"
)
track
=
np
.
zeros
((
seq_len
,
tag_num
),
dtype
=
"int32"
)
for
i
in
range
(
tag_num
):
alpha
[
0
,
i
]
=
self
.
a
[
i
]
+
x
[
0
,
i
]
for
k
in
range
(
1
,
seq_len
):
for
i
in
range
(
tag_num
):
max_score
=
-
np
.
finfo
(
"float64"
).
max
max_idx
=
0
for
j
in
range
(
tag_num
):
score
=
alpha
[
k
-
1
,
j
]
+
self
.
w
[
j
,
i
]
if
score
>
max_score
:
max_score
=
score
max_idx
=
j
alpha
[
k
,
i
]
=
max_score
+
x
[
k
,
i
]
track
[
k
,
i
]
=
max_idx
max_score
=
-
np
.
finfo
(
"float64"
).
max
max_idx
=
0
for
i
in
range
(
tag_num
):
score
=
alpha
[
seq_len
-
1
,
i
]
+
self
.
b
[
i
]
if
score
>
max_score
:
max_score
=
score
max_idx
=
i
decoded_path
[
-
1
]
=
max_idx
for
i
in
range
(
seq_len
-
1
,
0
,
-
1
):
decoded_path
[
i
-
1
]
=
max_idx
=
track
[
i
,
max_idx
]
def
decode
(
self
):
for
i
in
range
(
self
.
seq_num
):
start
=
self
.
seq_start_positions
[
i
]
end
=
self
.
seq_start_positions
[
i
+
1
]
self
.
_decode_one_sequence
(
self
.
decoded_path
[
start
:
end
,
:],
self
.
x
[
start
:
end
,
:])
return
self
.
decoded_path
class
TestCRFDecodingOp1
(
OpTest
):
"""
Compare the dynamic program with random generated parameters and inputs
with grouth truth not being given.
"""
def
set_test_data
(
self
):
SEQ_NUM
=
3
TAG_NUM
=
17
MAX_SEQ_LEN
=
10
lod
=
[[
0
]]
for
i
in
range
(
SEQ_NUM
):
lod
[
-
1
].
append
(
lod
[
-
1
][
-
1
]
+
random
.
randint
(
1
,
MAX_SEQ_LEN
))
emission
=
np
.
random
.
uniform
(
-
1
,
1
,
[
lod
[
-
1
][
-
1
],
TAG_NUM
]).
astype
(
"float64"
)
transition
=
np
.
random
.
uniform
(
-
0.5
,
0.5
,
[
TAG_NUM
+
2
,
TAG_NUM
]).
astype
(
"float64"
)
self
.
inputs
=
{
"Emission"
:
(
emission
,
lod
),
"Transition"
:
transition
,
}
decoder
=
CRFDecoding
(
emission
,
transition
,
lod
[
0
])
decoded_path
=
decoder
.
decode
()
self
.
outputs
=
{
"ViterbiPath"
:
decoded_path
}
def
setUp
(
self
):
self
.
op_type
=
"crf_decoding"
self
.
set_test_data
()
def
test_check_output
(
self
):
self
.
check_output
()
class
TestCRFDecodingOp2
(
OpTest
):
"""
Compare the dynamic program with brute force computation with
ground truth being given.
"""
def
setUp
(
self
):
self
.
op_type
=
"crf_decoding"
TAG_NUM
=
5
lod
=
[[
0
,
1
,
3
,
6
,
10
]]
transition
=
np
.
repeat
(
np
.
arange
(
TAG_NUM
,
dtype
=
"float64"
).
reshape
(
1
,
TAG_NUM
),
TAG_NUM
+
2
,
axis
=
0
)
emission
=
np
.
repeat
(
np
.
arange
(
TAG_NUM
,
dtype
=
"float64"
).
reshape
(
1
,
TAG_NUM
),
lod
[
-
1
][
-
1
],
axis
=
0
)
labels
=
np
.
random
.
randint
(
low
=
0
,
high
=
TAG_NUM
,
size
=
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int32"
)
predicted_labels
=
np
.
ones
(
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int32"
)
*
(
TAG_NUM
-
1
)
expected_output
=
(
labels
==
predicted_labels
).
astype
(
"int32"
)
self
.
inputs
=
{
"Emission"
:
(
emission
,
lod
),
"Transition"
:
transition
,
"Label"
:
(
labels
,
lod
)
}
self
.
outputs
=
{
"ViterbiPath"
:
expected_output
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录