Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
45af4f2a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
45af4f2a
编写于
8月 11, 2021
作者:
A
andyjpaddle
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add elementwise_min_grad_op_npu,test=develop (#34731)
上级
addd5fce
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
265 addition
and
43 deletion
+265
-43
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
+173
-3
python/paddle/fluid/tests/unittests/npu/test_elementwise_min_op_npu.py
.../fluid/tests/unittests/npu/test_elementwise_min_op_npu.py
+92
-40
未找到文件。
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
浏览文件 @
45af4f2a
...
...
@@ -15,7 +15,9 @@ limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
...
...
@@ -27,31 +29,199 @@ template <typename DeviceContext, typename T>
class
ElementwiseMinNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
place
=
ctx
.
GetPlace
();
out
->
mutable_data
<
T
>
(
place
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
direct_compute
=
false
;
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
direct_compute
=
y_dims
==
framework
::
slice_ddim
(
x_dims
,
axis
,
x_dims
.
size
());
}
else
{
direct_compute
=
x_dims
==
framework
::
slice_ddim
(
y_dims
,
axis
,
y_dims
.
size
());
}
Tensor
transformed_x
,
transformed_y
;
if
(
direct_compute
)
{
transformed_x
.
ShareDataWith
(
*
x
);
transformed_y
.
ShareDataWith
(
*
y
);
}
else
{
NpuElementWiseOpBroadcast
<
T
>
(
dev_ctx
,
x
,
y
,
axis
,
&
transformed_x
,
&
transformed_y
);
}
const
auto
&
runner
=
NpuOpRunner
(
"Minimum"
,
{
transformed_x
,
transformed_y
},
{
*
out
},
{});
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
const
auto
&
runner
=
NpuOpRunner
(
"Minimum"
,
{
*
x
,
*
y
},
{
*
out
},
{});
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMinGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x
->
dims
().
size
()
-
y
->
dims
().
size
())
:
axis
);
auto
stream
=
dev_ctx
.
stream
();
if
(
dx
&&
dy
)
{
// dx
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_x
;
tmp_x
.
ShareDataWith
(
*
dx
);
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_x
;
std
::
vector
<
int
>
reduce_axes_x
;
auto
src_dims_x
=
dx
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_x
=
(
src_dims_x
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_x
||
ax
>=
src_axis_x
+
src_dims_x
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_x
[
ax
-
src_axis_x
]
==
1
))
{
reduce_axes_x
.
push_back
(
ax
);
}
else
{
dst_dims_vec_x
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_x
.
empty
())
{
tmp_x
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_x
));
}
}
// dy
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_y
;
tmp_y
.
ShareDataWith
(
*
dy
);
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_y
;
std
::
vector
<
int
>
reduce_axes_y
;
auto
src_dims_y
=
dy
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_y
=
(
src_dims_y
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_y
||
ax
>=
src_axis_y
+
src_dims_y
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_y
[
ax
-
src_axis_y
]
==
1
))
{
reduce_axes_y
.
push_back
(
ax
);
}
else
{
dst_dims_vec_y
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_y
.
empty
())
{
tmp_y
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_y
));
}
}
const
auto
&
runner
=
NpuOpRunner
(
"MinimumGrad"
,
{
*
dout
,
*
x
,
*
y
},
{
tmp_x
,
tmp_y
},
{{
"grad_x"
,
true
},
{
"grad_y"
,
true
}});
runner
.
Run
(
stream
);
}
else
if
(
dx
)
{
Tensor
zero_tensor
(
dout
->
type
());
zero_tensor
.
mutable_data
<
T
>
(
y
->
dims
(),
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
zero_tensor
,
static_cast
<
T
>
(
0
));
// dx
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_x
;
tmp_x
.
ShareDataWith
(
*
dx
);
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_x
;
std
::
vector
<
int
>
reduce_axes_x
;
auto
src_dims_x
=
dx
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_x
=
(
src_dims_x
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_x
||
ax
>=
src_axis_x
+
src_dims_x
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_x
[
ax
-
src_axis_x
]
==
1
))
{
reduce_axes_x
.
push_back
(
ax
);
}
else
{
dst_dims_vec_x
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_x
.
empty
())
{
tmp_x
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_x
));
}
}
const
auto
&
runner
=
NpuOpRunner
(
"MinimumGrad"
,
{
*
dout
,
*
x
,
*
y
},
{
tmp_x
,
zero_tensor
},
{{
"grad_x"
,
true
},
{
"grad_y"
,
true
}});
runner
.
Run
(
stream
);
}
else
if
(
dy
)
{
Tensor
zero_tensor
(
dout
->
type
());
zero_tensor
.
mutable_data
<
T
>
(
x
->
dims
(),
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
zero_tensor
,
static_cast
<
T
>
(
0
));
// dy
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
tmp_y
;
tmp_y
.
ShareDataWith
(
*
dy
);
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec_y
;
std
::
vector
<
int
>
reduce_axes_y
;
auto
src_dims_y
=
dy
->
dims
();
auto
dout_dims
=
dout
->
dims
();
int
src_axis_y
=
(
src_dims_y
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis_y
||
ax
>=
src_axis_y
+
src_dims_y
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims_y
[
ax
-
src_axis_y
]
==
1
))
{
reduce_axes_y
.
push_back
(
ax
);
}
else
{
dst_dims_vec_y
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
!
reduce_axes_y
.
empty
())
{
tmp_y
.
Resize
(
framework
::
make_ddim
(
dst_dims_vec_y
));
}
}
const
auto
&
runner
=
NpuOpRunner
(
"MinimumGrad"
,
{
*
dout
,
*
x
,
*
y
},
{
zero_tensor
,
tmp_y
},
{{
"grad_x"
,
true
},
{
"grad_y"
,
true
}});
runner
.
Run
(
stream
);
}
else
{
std
::
cout
<<
"error"
<<
std
::
endl
;
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
elementwise_min
,
ops
::
ElementwiseMinNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ElementwiseMinNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
elementwise_min_grad
,
ops
::
ElementwiseMinGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ElementwiseMinGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_elementwise_min_op_npu.py
浏览文件 @
45af4f2a
...
...
@@ -18,81 +18,133 @@ import numpy as np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle.fluid.core
as
core
paddle
.
enable_static
()
SEED
=
2021
class
TestElementwiseMin
(
OpTest
):
class
TestElementwiseMin
Op
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"elementwise_min"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
y
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
minimum
(
x
,
y
)
self
.
init_input_output
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
y
)
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
init_input_output
(
self
):
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
+
self
.
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# TODO(ascendrc): Min grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
def
test_check_grad_normal
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
)
class
TestElementwiseMinFp16
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"elementwise_min"
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
test_check_grad_ingore_x
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
y
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
out
=
np
.
minimum
(
x
,
y
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
y
)
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad_ingore_y
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
)
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
class
TestElementwiseMinOpFp16
(
TestElementwiseMinOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestElementwiseMinOp_Vector
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
+
self
.
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
class
TestElementwiseMinOpFp16_Vector
(
TestElementwiseMinOp_Vector
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOp_scalar
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
array
([
0.5
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOpFp16_scalar
(
TestElementwiseMinOp_scalar
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestElementwiseMinOp_broadcast
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
[
0
,
0
,
:]
+
self
.
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
.
reshape
(
1
,
1
,
100
))
self
.
axis
=
-
1
class
TestElementwiseMinOpFp16_broadcast
(
TestElementwiseMinOp_broadcast
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestElementwiseMinNet
(
unittest
.
TestCase
):
class
TestElementwiseMin
Op
Net
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录