Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
44d94e11
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
44d94e11
编写于
9月 22, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
9月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove code that used in yaml's invoke (#46317)
* remove invoke yaml * fix ci bugs
上级
0a144ca1
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
14 addition
and
327 deletion
+14
-327
paddle/phi/api/lib/api_custom_impl.cc
paddle/phi/api/lib/api_custom_impl.cc
+0
-268
paddle/phi/api/lib/api_custom_impl.h
paddle/phi/api/lib/api_custom_impl.h
+0
-23
paddle/phi/api/yaml/legacy_ops.yaml
paddle/phi/api/yaml/legacy_ops.yaml
+14
-2
paddle/phi/infermeta/binary.cc
paddle/phi/infermeta/binary.cc
+0
-27
paddle/phi/infermeta/binary.h
paddle/phi/infermeta/binary.h
+0
-6
paddle/phi/infermeta/multiary.cc
paddle/phi/infermeta/multiary.cc
+0
-1
未找到文件。
paddle/phi/api/lib/api_custom_impl.cc
浏览文件 @
44d94e11
...
@@ -129,276 +129,8 @@ Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
...
@@ -129,276 +129,8 @@ Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
return
out
;
return
out
;
}
}
Tensor
embedding_impl
(
const
Tensor
&
x
,
const
Tensor
&
weight
,
int64_t
padding_idx
,
bool
sparse
)
{
DataType
kernel_data_type
=
ParseDataType
(
weight
);
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
weight
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
VLOG
(
6
)
<<
"embedding API kernel key: ["
<<
kernel_key
.
backend
()
<<
", "
<<
kernel_key
.
layout
()
<<
", "
<<
kernel_data_type
<<
"]"
;
auto
*
dev_ctx
=
GetDeviceContextByBackend
(
kernel_key
.
backend
());
Tensor
api_output
;
if
(
phi
::
DenseTensor
::
classof
(
weight
.
impl
().
get
()))
{
auto
kernel_result
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"embedding"
,
{
kernel_key
.
backend
(),
kernel_key
.
layout
(),
kernel_data_type
});
const
auto
&
kernel
=
kernel_result
.
kernel
;
VLOG
(
6
)
<<
"embedding API kernel: "
<<
kernel
;
auto
input_x
=
PrepareData
(
x
,
kernel
.
InputAt
(
0
),
{});
auto
input_weight
=
PrepareData
(
weight
,
kernel
.
InputAt
(
1
),
{});
auto
*
kernel_out
=
SetKernelOutput
(
&
api_output
);
phi
::
MetaTensor
meta_out
(
kernel_out
);
phi
::
EmbeddingInferMeta
(
MakeMetaTensor
(
*
input_x
),
MakeMetaTensor
(
*
input_weight
),
padding_idx
,
sparse
,
&
meta_out
);
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
int64_t
,
phi
::
DenseTensor
*
);
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
{
(
*
kernel_fn
)(
*
dev_ctx
,
*
input_x
,
*
input_weight
,
padding_idx
,
kernel_out
);
}
}
else
{
auto
kernel_result
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"sparse_weight_embedding"
,
{
kernel_key
.
backend
(),
kernel_key
.
layout
(),
kernel_data_type
});
const
auto
&
kernel
=
kernel_result
.
kernel
;
VLOG
(
6
)
<<
"sparse_weight_embedding API kernel: "
<<
kernel
;
auto
input_x
=
PrepareData
(
x
,
kernel
.
InputAt
(
0
),
{});
auto
input_weight
=
TensorToSelectedRows
(
weight
);
auto
*
kernel_out
=
SetKernelOutput
(
&
api_output
);
phi
::
MetaTensor
meta_out
(
kernel_out
);
phi
::
EmbeddingInferMeta
(
MakeMetaTensor
(
*
input_x
),
MakeMetaTensor
(
*
input_weight
),
padding_idx
,
sparse
,
&
meta_out
);
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
SelectedRows
&
,
int64_t
,
phi
::
DenseTensor
*
);
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
{
(
*
kernel_fn
)(
*
dev_ctx
,
*
input_x
,
*
input_weight
,
padding_idx
,
kernel_out
);
}
}
return
api_output
;
}
std
::
vector
<
Tensor
>
split_impl
(
const
Tensor
&
x
,
const
IntArray
&
num_or_sections
,
const
Scalar
&
axis
)
{
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
Backend
kernel_backend
=
kernel_key
.
backend
();
DataLayout
kernel_layout
=
kernel_key
.
layout
();
DataType
kernel_data_type
=
kernel_key
.
dtype
();
auto
kernel_result
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"split"
,
{
kernel_backend
,
kernel_layout
,
kernel_data_type
});
const
auto
&
kernel
=
kernel_result
.
kernel
;
VLOG
(
6
)
<<
"split API kernel key: ["
<<
kernel_backend
<<
", "
<<
kernel_layout
<<
", "
<<
kernel_data_type
<<
"]"
;
VLOG
(
6
)
<<
"split API kernel: "
<<
kernel
;
auto
*
dev_ctx
=
GetDeviceContextByBackend
(
kernel_backend
);
auto
dense_x
=
PrepareData
(
x
,
kernel
.
InputAt
(
0
),
{});
// Calculate the number of out tensors
size_t
out_number
;
if
(
num_or_sections
.
size
()
==
1
)
{
if
(
num_or_sections
.
GetData
()[
0
]
<
0
)
{
out_number
=
1
;
}
else
{
out_number
=
num_or_sections
.
GetData
()[
0
];
}
}
else
{
out_number
=
num_or_sections
.
size
();
}
std
::
vector
<
Tensor
>
out
;
auto
dense_outs
=
SetKernelOutput
(
out_number
,
&
out
);
std
::
vector
<
phi
::
MetaTensor
>
meta_outs
;
meta_outs
.
reserve
(
out_number
);
std
::
vector
<
phi
::
MetaTensor
*>
meta_out_ptrs
;
meta_out_ptrs
.
reserve
(
out_number
);
for
(
size_t
i
=
0
;
i
<
out_number
;
++
i
)
{
meta_outs
.
push_back
(
dense_outs
[
i
]);
meta_out_ptrs
.
push_back
(
&
meta_outs
.
back
());
}
phi
::
SplitInferMeta
(
MakeMetaTensor
(
*
dense_x
),
num_or_sections
,
axis
,
meta_out_ptrs
);
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
IntArray
&
,
const
phi
::
Scalar
&
,
std
::
vector
<
phi
::
DenseTensor
*>&
);
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
(
*
kernel_fn
)(
*
dev_ctx
,
*
dense_x
,
phi
::
IntArray
(
num_or_sections
),
phi
::
Scalar
(
axis
),
dense_outs
);
return
out
;
}
////////////////// Backward(grad) api impls //////////////////////
////////////////// Backward(grad) api impls //////////////////////
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
batch_norm_impl
(
const
Tensor
&
x
,
const
Tensor
&
scale
,
const
Tensor
&
bias
,
const
Tensor
&
mean
,
const
Tensor
&
variance
,
float
momentum
,
float
epsilon
,
const
std
::
string
&
data_layout
,
bool
is_test
,
bool
use_global_stats
,
bool
trainable_statistics
,
bool
fuse_with_relu
)
{
Backend
kernel_backend
=
Backend
::
UNDEFINED
;
DataLayout
kernel_layout
=
DataLayout
::
UNDEFINED
;
DataType
kernel_data_type
=
DataType
::
UNDEFINED
;
kernel_data_type
=
ParseDataType
(
x
);
if
(
kernel_backend
==
Backend
::
UNDEFINED
||
kernel_layout
==
DataLayout
::
UNDEFINED
||
kernel_data_type
==
DataType
::
UNDEFINED
)
{
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
if
(
kernel_backend
==
Backend
::
UNDEFINED
)
{
kernel_backend
=
kernel_key
.
backend
();
}
if
(
kernel_layout
==
DataLayout
::
UNDEFINED
)
{
kernel_layout
=
kernel_key
.
layout
();
}
if
(
kernel_data_type
==
DataType
::
UNDEFINED
)
{
kernel_data_type
=
kernel_key
.
dtype
();
}
}
auto
kernel_result
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"batch_norm"
,
{
kernel_backend
,
kernel_layout
,
kernel_data_type
});
const
auto
&
kernel
=
kernel_result
.
kernel
;
VLOG
(
6
)
<<
"batch_norm API kernel key: ["
<<
kernel_backend
<<
", "
<<
kernel_layout
<<
", "
<<
kernel_data_type
<<
"]"
;
VLOG
(
6
)
<<
"batch_norm API kernel: "
<<
kernel
;
auto
*
dev_ctx
=
GetDeviceContextByBackend
(
kernel_backend
);
auto
input_x
=
PrepareData
(
x
,
kernel
.
InputAt
(
0
),
{});
auto
input_scale
=
PrepareData
(
scale
,
kernel
.
InputAt
(
1
),
{});
auto
input_bias
=
PrepareData
(
bias
,
kernel
.
InputAt
(
2
),
{});
auto
input_mean
=
PrepareData
(
mean
,
kernel
.
InputAt
(
3
),
{});
auto
input_variance
=
PrepareData
(
variance
,
kernel
.
InputAt
(
4
),
{});
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
api_output
;
auto
kernel_out_0
=
SetKernelOutput
(
&
std
::
get
<
0
>
(
api_output
));
std
::
get
<
1
>
(
api_output
).
set_impl
(
mean
.
impl
());
std
::
get
<
2
>
(
api_output
).
set_impl
(
variance
.
impl
());
auto
kernel_out_1
=
SetKernelOutput
(
&
std
::
get
<
1
>
(
api_output
));
auto
kernel_out_2
=
SetKernelOutput
(
&
std
::
get
<
2
>
(
api_output
));
auto
kernel_out_3
=
SetKernelOutput
(
&
std
::
get
<
3
>
(
api_output
));
auto
kernel_out_4
=
SetKernelOutput
(
&
std
::
get
<
4
>
(
api_output
));
auto
kernel_out_5
=
SetKernelOutput
(
&
std
::
get
<
5
>
(
api_output
));
phi
::
MetaTensor
meta_out_0
(
kernel_out_0
);
phi
::
MetaTensor
meta_out_1
(
kernel_out_1
);
phi
::
MetaTensor
meta_out_2
(
kernel_out_2
);
phi
::
MetaTensor
meta_out_3
(
kernel_out_3
);
phi
::
MetaTensor
meta_out_4
(
kernel_out_4
);
phi
::
MetaTensor
meta_out_5
(
kernel_out_5
);
phi
::
BatchNormInferMeta
(
MakeMetaTensor
(
*
input_x
),
MakeMetaTensor
(
*
input_scale
),
MakeMetaTensor
(
*
input_bias
),
MakeMetaTensor
(
*
input_mean
),
MakeMetaTensor
(
*
input_variance
),
momentum
,
epsilon
,
data_layout
,
is_test
,
use_global_stats
,
trainable_statistics
,
fuse_with_relu
,
&
meta_out_0
,
&
meta_out_1
,
&
meta_out_2
,
&
meta_out_3
,
&
meta_out_4
,
&
meta_out_5
);
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
float
,
float
,
const
std
::
string
&
,
bool
,
bool
,
bool
,
bool
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
);
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
{
(
*
kernel_fn
)(
*
dev_ctx
,
*
input_x
,
*
input_scale
,
*
input_bias
,
*
input_mean
,
*
input_variance
,
momentum
,
epsilon
,
data_layout
,
is_test
,
use_global_stats
,
trainable_statistics
,
fuse_with_relu
,
kernel_out_0
,
kernel_out_1
,
kernel_out_2
,
kernel_out_3
,
kernel_out_4
,
kernel_out_5
);
}
return
api_output
;
}
void
imag_grad_impl
(
const
Tensor
&
out_grad
,
Tensor
*
x_grad
)
{
void
imag_grad_impl
(
const
Tensor
&
out_grad
,
Tensor
*
x_grad
)
{
phi
::
KernelKey
kernel_key
{
ParseBackend
(
out_grad
),
phi
::
KernelKey
kernel_key
{
ParseBackend
(
out_grad
),
out_grad
.
layout
(),
out_grad
.
layout
(),
...
...
paddle/phi/api/lib/api_custom_impl.h
浏览文件 @
44d94e11
...
@@ -33,31 +33,8 @@ namespace experimental {
...
@@ -33,31 +33,8 @@ namespace experimental {
Tensor
add_n_impl
(
const
std
::
vector
<
Tensor
>&
x
);
Tensor
add_n_impl
(
const
std
::
vector
<
Tensor
>&
x
);
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
batch_norm_impl
(
const
Tensor
&
x
,
const
Tensor
&
scale
,
const
Tensor
&
bias
,
const
Tensor
&
mean
,
const
Tensor
&
variance
,
float
momentum
,
float
epsilon
,
const
std
::
string
&
data_layout
,
bool
is_test
,
bool
use_global_stats
,
bool
trainable_statistics
,
bool
fuse_with_relu
);
Tensor
copy_to_impl
(
const
Tensor
&
x
,
Place
place
,
bool
blocking
);
Tensor
copy_to_impl
(
const
Tensor
&
x
,
Place
place
,
bool
blocking
);
Tensor
embedding_impl
(
const
Tensor
&
x
,
const
Tensor
&
weight
,
int64_t
padding_idx
,
bool
sparse
);
std
::
vector
<
Tensor
>
split_impl
(
const
Tensor
&
x
,
const
IntArray
&
num_or_sections
,
const
Scalar
&
axis
);
////////////////// Backward(grad) api impls //////////////////////
////////////////// Backward(grad) api impls //////////////////////
void
imag_grad_impl
(
const
Tensor
&
out_grad
,
Tensor
*
x_grad
);
void
imag_grad_impl
(
const
Tensor
&
out_grad
,
Tensor
*
x_grad
);
...
...
paddle/phi/api/yaml/legacy_ops.yaml
浏览文件 @
44d94e11
...
@@ -328,7 +328,12 @@
...
@@ -328,7 +328,12 @@
-
op
:
batch_norm
-
op
:
batch_norm
args
:
(Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
args
:
(Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
output
:
Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
output
:
Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
invoke
:
batch_norm_impl(x, scale, bias, mean, variance, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics, fuse_with_relu)
infer_meta
:
func
:
BatchNormInferMeta
kernel
:
func
:
batch_norm
data_type
:
x
view
:
(mean -> mean_out), (variance -> variance_out)
backward
:
batch_norm_grad
backward
:
batch_norm_grad
-
op
:
bce_loss
-
op
:
bce_loss
...
@@ -798,7 +803,14 @@
...
@@ -798,7 +803,14 @@
-
op
:
embedding
-
op
:
embedding
args
:
(Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false)
args
:
(Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false)
output
:
Tensor
output
:
Tensor
invoke
:
embedding_impl(x, weight, padding_idx, sparse)
infer_meta
:
func
:
EmbeddingInferMeta
param
:
[
x
,
weight
,
padding_idx
]
kernel
:
func
:
embedding {dense, dense -> dense}
sparse_weight_embedding {dense, selected_rows -> dense}
param
:
[
x
,
weight
,
padding_idx
]
data_type
:
weight
backward
:
embedding_grad
backward
:
embedding_grad
-
op
:
empty
-
op
:
empty
...
...
paddle/phi/infermeta/binary.cc
浏览文件 @
44d94e11
...
@@ -90,32 +90,6 @@ void AllValueCompareInferMeta(const MetaTensor& x,
...
@@ -90,32 +90,6 @@ void AllValueCompareInferMeta(const MetaTensor& x,
out
->
set_dtype
(
DataType
::
BOOL
);
out
->
set_dtype
(
DataType
::
BOOL
);
}
}
void
EmbeddingInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
weight
,
int64_t
padding_idx
,
MetaTensor
*
out
)
{
auto
table_dims
=
weight
.
dims
();
auto
ids_dims
=
input
.
dims
();
int
ids_rank
=
ids_dims
.
size
();
VLOG
(
5
)
<<
"ids rank is "
<<
ids_rank
<<
std
::
endl
;
PADDLE_ENFORCE_EQ
(
table_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"ShapeError: The dimensions of the 'lookup table' must be 2. "
"But received lookup table's dimensions = %d, "
"lookup table's shape = [%s]."
,
table_dims
.
size
(),
table_dims
));
auto
output_dims
=
phi
::
vectorize
(
ids_dims
);
output_dims
.
push_back
(
table_dims
[
1
]);
out
->
set_dims
(
phi
::
make_ddim
(
output_dims
));
out
->
set_dtype
(
weight
.
dtype
());
out
->
share_lod
(
input
);
}
void
KLDivInferMeta
(
const
MetaTensor
&
x
,
void
KLDivInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
label
,
const
MetaTensor
&
label
,
const
std
::
string
&
reduction
,
const
std
::
string
&
reduction
,
...
@@ -1196,7 +1170,6 @@ void ElementwiseRawInferMeta(const MetaTensor& x,
...
@@ -1196,7 +1170,6 @@ void ElementwiseRawInferMeta(const MetaTensor& x,
void
EmbeddingInferMeta
(
const
MetaTensor
&
x
,
void
EmbeddingInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
weight
,
const
MetaTensor
&
weight
,
int64_t
padding_idx
,
int64_t
padding_idx
,
bool
sparse
,
MetaTensor
*
out
)
{
MetaTensor
*
out
)
{
const
auto
&
table_dims
=
weight
.
dims
();
const
auto
&
table_dims
=
weight
.
dims
();
const
auto
&
ids_dims
=
x
.
dims
();
const
auto
&
ids_dims
=
x
.
dims
();
...
...
paddle/phi/infermeta/binary.h
浏览文件 @
44d94e11
...
@@ -38,11 +38,6 @@ void AllValueCompareInferMeta(const MetaTensor& x,
...
@@ -38,11 +38,6 @@ void AllValueCompareInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
MetaConfig
config
=
MetaConfig
());
void
EmbeddingInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
weight
,
int64_t
padding_idx
,
MetaTensor
*
out
);
void
KLDivInferMeta
(
const
MetaTensor
&
x
,
void
KLDivInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
label
,
const
MetaTensor
&
label
,
const
std
::
string
&
reduction
,
const
std
::
string
&
reduction
,
...
@@ -201,7 +196,6 @@ void ElementwiseRawInferMeta(const MetaTensor& x_meta,
...
@@ -201,7 +196,6 @@ void ElementwiseRawInferMeta(const MetaTensor& x_meta,
void
EmbeddingInferMeta
(
const
MetaTensor
&
x
,
void
EmbeddingInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
weight
,
const
MetaTensor
&
weight
,
int64_t
padding_idx
,
int64_t
padding_idx
,
bool
sparse
,
MetaTensor
*
out
);
MetaTensor
*
out
);
void
ExpandAsInferMeta
(
const
MetaTensor
&
x
,
void
ExpandAsInferMeta
(
const
MetaTensor
&
x
,
...
...
paddle/phi/infermeta/multiary.cc
浏览文件 @
44d94e11
...
@@ -2901,5 +2901,4 @@ void GraphSendUVInferMeta(const MetaTensor& x,
...
@@ -2901,5 +2901,4 @@ void GraphSendUVInferMeta(const MetaTensor& x,
}
// namespace phi
}
// namespace phi
PD_REGISTER_INFER_META_FN
(
batch_norm
,
phi
::
BatchNormInferMeta
);
PD_REGISTER_INFER_META_FN
(
batch_norm_infer
,
phi
::
BatchNormInferInferMeta
);
PD_REGISTER_INFER_META_FN
(
batch_norm_infer
,
phi
::
BatchNormInferInferMeta
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录