Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
44855da3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
44855da3
编写于
1月 20, 2023
作者:
J
jakpiase
提交者:
GitHub
1月 20, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix for bad_alloc in oneDNN matmul_grad kernel (#48593)
* fix for matmul_grad * another fix for matmul_grad * fix
上级
ee4e5323
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
74 addition
and
46 deletion
+74
-46
paddle/phi/kernels/onednn/matmul_grad_kernel.cc
paddle/phi/kernels/onednn/matmul_grad_kernel.cc
+74
-46
未找到文件。
paddle/phi/kernels/onednn/matmul_grad_kernel.cc
浏览文件 @
44855da3
...
...
@@ -19,37 +19,64 @@
namespace
phi
{
std
::
vector
<
int64_t
>
ExtendDimsWithOnes
(
const
std
::
vector
<
int64_t
>
&
dims
,
int
new_size
)
{
std
::
vector
<
int64_t
>
new_dims
(
new_size
,
1
);
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
new_dims
[
new_size
-
dims
.
size
()
+
i
]
=
dims
[
i
];
void
CalculateMatrixDims
(
const
std
::
vector
<
int64_t
>
&
x_dims
,
const
std
::
vector
<
int64_t
>
&
y_dims
,
const
std
::
vector
<
int64_t
>
&
out_dims
,
std
::
vector
<
int64_t
>
*
x_bd_dims
,
std
::
vector
<
int64_t
>
*
y_bd_dims
,
std
::
vector
<
int64_t
>
*
out_bd_dims
,
bool
trans_x
,
bool
trans_y
)
{
if
(
x_dims
.
size
()
==
1
)
{
(
*
x_bd_dims
)[
x_bd_dims
->
size
()
-
1
]
=
x_dims
[
0
];
}
else
if
(
x_dims
.
size
()
==
2
)
{
(
*
x_bd_dims
)[
x_bd_dims
->
size
()
-
1
]
=
x_dims
[
1
];
(
*
x_bd_dims
)[
x_bd_dims
->
size
()
-
2
]
=
x_dims
[
0
];
}
else
{
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
(
*
x_bd_dims
)[
x_bd_dims
->
size
()
-
x_dims
.
size
()
+
i
]
=
x_dims
[
i
];
}
}
if
(
y_dims
.
size
()
==
1
)
{
(
*
y_bd_dims
)[
x_bd_dims
->
size
()
-
2
]
=
y_dims
[
0
];
}
else
if
(
y_dims
.
size
()
==
2
)
{
(
*
y_bd_dims
)[
y_bd_dims
->
size
()
-
1
]
=
y_dims
[
1
];
(
*
y_bd_dims
)[
y_bd_dims
->
size
()
-
2
]
=
y_dims
[
0
];
}
else
{
for
(
size_t
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
(
*
y_bd_dims
)[
y_bd_dims
->
size
()
-
y_dims
.
size
()
+
i
]
=
y_dims
[
i
];
}
}
for
(
size_t
i
=
0
;
i
<
x_bd_dims
->
size
()
-
2
;
++
i
)
{
(
*
out_bd_dims
)[
i
]
=
std
::
max
((
*
x_bd_dims
)[
i
],
(
*
y_bd_dims
)[
i
]);
}
int
h_idx
=
trans_x
?
x_bd_dims
->
size
()
-
1
:
x_bd_dims
->
size
()
-
2
;
int
w_idx
=
trans_y
?
y_bd_dims
->
size
()
-
2
:
y_bd_dims
->
size
()
-
1
;
return
new_dims
;
(
*
out_bd_dims
)[
x_bd_dims
->
size
()
-
2
]
=
(
*
x_bd_dims
)[
h_idx
];
(
*
out_bd_dims
)[
y_bd_dims
->
size
()
-
1
]
=
(
*
y_bd_dims
)[
w_idx
];
}
template
<
typename
T
>
void
CalculateGradMatrixDims
(
const
OneDNNContext
&
dev_ctx
,
DenseTensor
*
dx_tmp
,
DenseTensor
*
dy_tmp
,
const
std
::
vector
<
int64_t
>
&
dx_dims
,
const
std
::
vector
<
int64_t
>
&
dy_dims
,
std
::
vector
<
int64_t
>
*
dx_bd_dims
,
std
::
vector
<
int64_t
>
*
dy_bd_dims
)
{
for
(
size_t
i
=
0
;
i
<
dx_
dims
.
size
()
-
2
;
++
i
)
{
if
(
dx_dims
[
i
]
!=
dy_dims
[
i
])
{
if
(
dx_dims
[
i
]
==
1
)
{
(
*
dx_bd_dims
)[
i
]
=
dy_dims
[
i
];
for
(
size_t
i
=
0
;
i
<
dx_
bd_dims
->
size
()
-
2
;
++
i
)
{
if
(
(
*
dx_bd_dims
)[
i
]
!=
(
*
dy_bd_dims
)
[
i
])
{
if
(
(
*
dx_bd_dims
)
[
i
]
==
1
)
{
(
*
dx_bd_dims
)[
i
]
=
(
*
dy_bd_dims
)
[
i
];
}
else
{
(
*
dy_bd_dims
)[
i
]
=
dx_dims
[
i
];
(
*
dy_bd_dims
)[
i
]
=
(
*
dx_bd_dims
)
[
i
];
}
}
}
dx_tmp
->
Resize
(
make_ddim
(
(
*
dx_bd_dims
)
));
dx_tmp
->
Resize
(
make_ddim
(
*
dx_bd_dims
));
dev_ctx
.
template
Alloc
<
T
>(
dx_tmp
);
dy_tmp
->
Resize
(
make_ddim
(
(
*
dy_bd_dims
)
));
dy_tmp
->
Resize
(
make_ddim
(
*
dy_bd_dims
));
dev_ctx
.
template
Alloc
<
T
>(
dy_tmp
);
}
...
...
@@ -58,7 +85,7 @@ void ReduceSumForMatmulGradOutput(const OneDNNContext &dev_ctx,
const
DenseTensor
*
dx_tmp
,
DenseTensor
*
dx
,
const
std
::
vector
<
int64_t
>
&
dx_dims
,
const
std
::
vector
<
int64_t
>
&
squeezed
_dims
)
{
const
std
::
vector
<
int64_t
>
&
x
_dims
)
{
funcs
::
ReductionOneDNNHandler
<
T
>
handler
(
dnnl
::
algorithm
::
reduction_sum
,
0.0
f
,
0.0
f
,
...
...
@@ -66,7 +93,7 @@ void ReduceSumForMatmulGradOutput(const OneDNNContext &dev_ctx,
dev_ctx
.
GetPlace
(),
dx_tmp
,
dx
,
d
x_dims
);
x_dims
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
dx_tmp
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
dx
);
...
...
@@ -79,8 +106,6 @@ void ReduceSumForMatmulGradOutput(const OneDNNContext &dev_ctx,
reduction_p
->
execute
(
astream
,
reduction_args
);
astream
.
wait
();
dx
->
set_mem_desc
(
dst_memory_p
->
get_desc
().
reshape
(
squeezed_dims
));
}
template
<
typename
T
,
typename
Context
>
...
...
@@ -99,64 +124,67 @@ void MatmulGradKernel(const Context &dev_ctx,
size_t
ndims
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
ndims
=
std
::
max
<
size_t
>
(
ndims
,
3
);
if
(
x_dims
.
size
()
!=
ndims
)
{
x_dims
=
ExtendDimsWithOnes
(
x_dims
,
ndims
);
}
if
(
y_dims
.
size
()
!=
ndims
)
{
y_dims
=
ExtendDimsWithOnes
(
y_dims
,
ndims
);
}
if
(
dout_dims
.
size
()
!=
ndims
)
{
dout_dims
=
ExtendDimsWithOnes
(
dout_dims
,
ndims
);
}
// in broadcasting scenario new memory is required because
// reduce sum must be calculated upon broadcasted dims
DenseTensor
dx_tmp
,
dy_tmp
;
std
::
vector
<
int64_t
>
dx_bd_dims
(
x_dims
);
std
::
vector
<
int64_t
>
dy_bd_dims
(
y_dims
);
std
::
vector
<
int64_t
>
dout_bd_dims
(
ndims
,
1
);
std
::
vector
<
int64_t
>
x_bd_dims
(
ndims
,
1
);
std
::
vector
<
int64_t
>
y_bd_dims
(
ndims
,
1
);
CalculateMatrixDims
(
x_dims
,
y_dims
,
dout_dims
,
&
x_bd_dims
,
&
y_bd_dims
,
&
dout_bd_dims
,
transpose_x
,
transpose_y
);
std
::
vector
<
int64_t
>
dx_bd_dims
(
x_bd_dims
);
std
::
vector
<
int64_t
>
dy_bd_dims
(
y_bd_dims
);
CalculateGradMatrixDims
<
T
>
(
dev_ctx
,
&
dx_tmp
,
&
dy_tmp
,
x_dims
,
y_dims
,
&
dx_bd_dims
,
&
dy_bd_dims
);
dev_ctx
,
&
dx_tmp
,
&
dy_tmp
,
&
dx_bd_dims
,
&
dy_bd_dims
);
if
(
transpose_x
&&
transpose_y
)
{
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
y
,
dout
,
y_
dims
,
dout
_dims
,
true
,
true
,
&
dx_tmp
);
dev_ctx
,
y
,
dout
,
y_
bd_dims
,
dout_bd
_dims
,
true
,
true
,
&
dx_tmp
);
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
dout
,
x
,
dout_
dims
,
x
_dims
,
true
,
true
,
&
dy_tmp
);
dev_ctx
,
dout
,
x
,
dout_
bd_dims
,
x_bd
_dims
,
true
,
true
,
&
dy_tmp
);
}
else
if
(
transpose_x
)
{
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
y
,
dout
,
y_
dims
,
dout
_dims
,
false
,
true
,
&
dx_tmp
);
dev_ctx
,
y
,
dout
,
y_
bd_dims
,
dout_bd
_dims
,
false
,
true
,
&
dx_tmp
);
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
x
,
dout
,
x_
dims
,
dout
_dims
,
false
,
false
,
&
dy_tmp
);
dev_ctx
,
x
,
dout
,
x_
bd_dims
,
dout_bd
_dims
,
false
,
false
,
&
dy_tmp
);
}
else
if
(
transpose_y
)
{
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
dout
,
y
,
dout_
dims
,
y
_dims
,
false
,
false
,
&
dx_tmp
);
dev_ctx
,
dout
,
y
,
dout_
bd_dims
,
y_bd
_dims
,
false
,
false
,
&
dx_tmp
);
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
dout
,
x
,
dout_
dims
,
x
_dims
,
true
,
false
,
&
dy_tmp
);
dev_ctx
,
dout
,
x
,
dout_
bd_dims
,
x_bd
_dims
,
true
,
false
,
&
dy_tmp
);
}
else
{
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
dout
,
y
,
dout_
dims
,
y
_dims
,
false
,
true
,
&
dx_tmp
);
dev_ctx
,
dout
,
y
,
dout_
bd_dims
,
y_bd
_dims
,
false
,
true
,
&
dx_tmp
);
funcs
::
ExecuteMatmul
<
T
,
T
>
(
dev_ctx
,
x
,
dout
,
x_
dims
,
dout
_dims
,
true
,
false
,
&
dy_tmp
);
dev_ctx
,
x
,
dout
,
x_
bd_dims
,
dout_bd
_dims
,
true
,
false
,
&
dy_tmp
);
}
if
(
x_dims
!=
dx_bd_dims
)
{
if
(
x_
bd_
dims
!=
dx_bd_dims
)
{
ReduceSumForMatmulGradOutput
<
T
>
(
dev_ctx
,
&
dx_tmp
,
dx
,
x_dims
,
vectorize
(
x
.
dims
())
);
dev_ctx
,
&
dx_tmp
,
dx
,
dx_bd_dims
,
x_bd_dims
);
}
else
{
*
dx
=
std
::
move
(
dx_tmp
);
}
if
(
y_dims
!=
dy_bd_dims
)
{
if
(
y_
bd_
dims
!=
dy_bd_dims
)
{
ReduceSumForMatmulGradOutput
<
T
>
(
dev_ctx
,
&
dy_tmp
,
dy
,
y_dims
,
vectorize
(
y
.
dims
())
);
dev_ctx
,
&
dy_tmp
,
dy
,
dy_bd_dims
,
y_bd_dims
);
}
else
{
*
dy
=
std
::
move
(
dy_tmp
);
}
dx
->
set_mem_desc
(
x
.
mem_desc
());
dx
->
Resize
(
x
.
dims
());
d
x
->
set_mem_desc
(
x
.
mem_desc
().
reshape
(
vectorize
(
x
.
dims
())
));
d
y
->
set_mem_desc
(
y
.
mem_desc
(
));
dy
->
Resize
(
y
.
dims
());
dy
->
set_mem_desc
(
y
.
mem_desc
().
reshape
(
vectorize
(
y
.
dims
())));
}
template
<
typename
T
,
typename
Context
>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录