Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4440d7ce
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4440d7ce
编写于
9月 06, 2019
作者:
W
wangchaochaohu
提交者:
GitHub
9月 06, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop cuda realization of label smooth op (#19175)
上级
31c5a5ee
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
90 addition
and
4 deletion
+90
-4
paddle/fluid/operators/label_smooth_op.cu
paddle/fluid/operators/label_smooth_op.cu
+90
-4
未找到文件。
paddle/fluid/operators/label_smooth_op.cu
浏览文件 @
4440d7ce
...
...
@@ -12,15 +12,101 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/label_smooth_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
LabelSmoothRunOriginKernel
(
const
int
N
,
const
float
epsilon
,
const
int
label_dim
,
const
T
*
src
,
T
*
dst
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dst
[
idx
]
=
static_cast
<
T
>
(
1
-
epsilon
)
*
src
[
idx
]
+
static_cast
<
T
>
(
epsilon
/
label_dim
);
}
}
template
<
typename
T
>
__global__
void
LabelSmoothRunDistKernel
(
const
int
N
,
const
float
epsilon
,
const
int
dist_numel
,
const
T
*
src
,
const
T
*
dist_data
,
T
*
dst
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
dist_idx
=
idx
-
(
idx
/
dist_numel
)
*
dist_numel
;
dst
[
idx
]
=
static_cast
<
T
>
(
1
-
epsilon
)
*
src
[
idx
]
+
static_cast
<
T
>
(
epsilon
)
*
dist_data
[
dist_idx
];
}
}
template
<
typename
T
>
__global__
void
LabelSmoothGradRunKernel
(
const
int
N
,
const
float
epsilon
,
const
T
*
src
,
T
*
dst
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dst
[
idx
]
=
static_cast
<
T
>
(
1
-
epsilon
)
*
src
[
idx
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
LabelSmoothGPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
dist_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PriorDist"
);
auto
label_dim
=
in_t
->
dims
()[
1
];
auto
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
size_prob
=
in_t
->
numel
();
const
T
*
in_data
=
in_t
->
data
<
T
>
();
T
*
out_data
=
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
threads
=
512
;
int
grid
=
(
size_prob
+
threads
-
1
)
/
threads
;
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
if
(
dist_t
)
{
auto
dist_numel
=
dist_t
->
numel
();
const
T
*
dist_data
=
dist_t
->
data
<
T
>
();
LabelSmoothRunDistKernel
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
size_prob
,
epsilon
,
dist_numel
,
in_data
,
dist_data
,
out_data
);
}
else
{
LabelSmoothRunOriginKernel
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
size_prob
,
epsilon
,
label_dim
,
in_data
,
out_data
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LabelSmoothGradGPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_in_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
d_in_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
const
T
*
in_data
=
d_out_t
->
data
<
T
>
();
auto
size_prob
=
d_out_t
->
numel
();
T
*
out_data
=
d_in_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
threads
=
512
;
int
grid
=
(
size_prob
+
threads
-
1
)
/
threads
;
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
LabelSmoothGradRunKernel
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
size_prob
,
epsilon
,
in_data
,
out_data
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
label_smooth
,
ops
::
LabelSmoothKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmoothKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LabelSmooth
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmooth
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
label_smooth_grad
,
ops
::
LabelSmoothGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmoothGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LabelSmoothGrad
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmoothGrad
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录