Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
43facfd3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
43facfd3
编写于
7月 01, 2020
作者:
L
LielinJiang
提交者:
GitHub
7月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry-pick]Add DistributedBatchSampler and Colerjitter (#25242)
* add DistributedSampler and ColorJitter, test=develop
上级
693083a4
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
564 addition
and
0 deletion
+564
-0
python/CMakeLists.txt
python/CMakeLists.txt
+1
-0
python/paddle/__init__.py
python/paddle/__init__.py
+3
-0
python/paddle/incubate/__init__.py
python/paddle/incubate/__init__.py
+18
-0
python/paddle/incubate/hapi/__init__.py
python/paddle/incubate/hapi/__init__.py
+18
-0
python/paddle/incubate/hapi/distributed.py
python/paddle/incubate/hapi/distributed.py
+134
-0
python/paddle/incubate/hapi/tests/CMakeLists.txt
python/paddle/incubate/hapi/tests/CMakeLists.txt
+6
-0
python/paddle/incubate/hapi/tests/test_distributed_sampler.py
...on/paddle/incubate/hapi/tests/test_distributed_sampler.py
+69
-0
python/paddle/incubate/hapi/tests/test_transforms.py
python/paddle/incubate/hapi/tests/test_transforms.py
+52
-0
python/paddle/incubate/hapi/vision/__init__.py
python/paddle/incubate/hapi/vision/__init__.py
+18
-0
python/paddle/incubate/hapi/vision/transforms/__init__.py
python/paddle/incubate/hapi/vision/transforms/__init__.py
+19
-0
python/paddle/incubate/hapi/vision/transforms/transforms.py
python/paddle/incubate/hapi/vision/transforms/transforms.py
+222
-0
python/setup.py.in
python/setup.py.in
+4
-0
未找到文件。
python/CMakeLists.txt
浏览文件 @
43facfd3
...
...
@@ -96,6 +96,7 @@ if (WITH_TESTING)
add_subdirectory
(
paddle/fluid/tests
)
add_subdirectory
(
paddle/fluid/contrib/tests
)
add_subdirectory
(
paddle/fluid/contrib/slim/tests
)
add_subdirectory
(
paddle/incubate/hapi/tests
)
endif
()
install
(
DIRECTORY
${
PADDLE_PYTHON_PACKAGE_DIR
}
DESTINATION opt/paddle/share/wheels
...
...
python/paddle/__init__.py
浏览文件 @
43facfd3
...
...
@@ -35,3 +35,6 @@ import paddle.distributed
batch
=
batch
.
batch
import
paddle.sysconfig
import
paddle.complex
from
.
import
incubate
from
.incubate
import
hapi
python/paddle/incubate/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
hapi
__all__
=
[]
__all__
+=
hapi
.
__all__
python/paddle/incubate/hapi/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
distributed
from
.
import
vision
__all__
=
[
'distributed'
,
'vision'
]
python/paddle/incubate/hapi/distributed.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
numpy
as
np
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.fluid.io
import
BatchSampler
__all__
=
[
'DistributedBatchSampler'
]
class
DistributedBatchSampler
(
BatchSampler
):
"""Sampler that restricts data loading to a subset of the dataset.
In such case, each process can pass a DistributedBatchSampler instance
as a DataLoader sampler, and load a subset of the original dataset that
is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Args:
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
or other python object which implemented
`__len__` for BatchSampler to get sample
number of data source.
batch_size(int): sample indice number in a mini-batch indices.
shuffle(bool): whther to shuffle indices order before genrating
batch indices. Default False.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size. Default False
Examples:
.. code-block:: python
from paddle.incubate.hapi.distributed import DistributedBatchSampler
class FakeDataset():
def __init__(self):
pass
def __getitem__(self, idx):
return idx,
def __len__(self):
return 10
train_dataset = FakeDataset()
dist_train_dataloader = DistributedBatchSampler(train_dataset, batch_size=4)
for data in dist_train_dataloader:
# do something
break
"""
def
__init__
(
self
,
dataset
,
batch_size
,
shuffle
=
False
,
drop_last
=
False
):
self
.
dataset
=
dataset
assert
isinstance
(
batch_size
,
int
)
and
batch_size
>
0
,
\
"batch_size should be a positive integer"
self
.
batch_size
=
batch_size
assert
isinstance
(
shuffle
,
bool
),
\
"shuffle should be a boolean value"
self
.
shuffle
=
shuffle
assert
isinstance
(
drop_last
,
bool
),
\
"drop_last should be a boolean number"
self
.
drop_last
=
drop_last
self
.
nranks
=
ParallelEnv
().
nranks
self
.
local_rank
=
ParallelEnv
().
local_rank
self
.
epoch
=
0
self
.
num_samples
=
int
(
math
.
ceil
(
len
(
self
.
dataset
)
*
1.0
/
self
.
nranks
))
self
.
total_size
=
self
.
num_samples
*
self
.
nranks
def
__iter__
(
self
):
num_samples
=
len
(
self
.
dataset
)
indices
=
np
.
arange
(
num_samples
).
tolist
()
indices
+=
indices
[:(
self
.
total_size
-
len
(
indices
))]
assert
len
(
indices
)
==
self
.
total_size
if
self
.
shuffle
:
np
.
random
.
RandomState
(
self
.
epoch
).
shuffle
(
indices
)
self
.
epoch
+=
1
# subsample
def
_get_indices_by_batch_size
(
indices
):
subsampled_indices
=
[]
last_batch_size
=
self
.
total_size
%
(
self
.
batch_size
*
self
.
nranks
)
assert
last_batch_size
%
self
.
nranks
==
0
last_local_batch_size
=
last_batch_size
//
self
.
nranks
for
i
in
range
(
self
.
local_rank
*
self
.
batch_size
,
len
(
indices
)
-
last_batch_size
,
self
.
batch_size
*
self
.
nranks
):
subsampled_indices
.
extend
(
indices
[
i
:
i
+
self
.
batch_size
])
indices
=
indices
[
len
(
indices
)
-
last_batch_size
:]
subsampled_indices
.
extend
(
indices
[
self
.
local_rank
*
last_local_batch_size
:(
self
.
local_rank
+
1
)
*
last_local_batch_size
])
return
subsampled_indices
if
self
.
nranks
>
1
:
indices
=
_get_indices_by_batch_size
(
indices
)
assert
len
(
indices
)
==
self
.
num_samples
_sample_iter
=
iter
(
indices
)
batch_indices
=
[]
for
idx
in
_sample_iter
:
batch_indices
.
append
(
idx
)
if
len
(
batch_indices
)
==
self
.
batch_size
:
yield
batch_indices
batch_indices
=
[]
if
not
self
.
drop_last
and
len
(
batch_indices
)
>
0
:
yield
batch_indices
def
__len__
(
self
):
num_samples
=
self
.
num_samples
num_samples
+=
int
(
not
self
.
drop_last
)
*
(
self
.
batch_size
-
1
)
return
num_samples
//
self
.
batch_size
def
set_epoch
(
self
,
epoch
):
self
.
epoch
=
epoch
python/paddle/incubate/hapi/tests/CMakeLists.txt
0 → 100644
浏览文件 @
43facfd3
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/incubate/hapi/tests/test_distributed_sampler.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
unittest
from
paddle.incubate.hapi.distributed
import
DistributedBatchSampler
class
FakeDataset
():
def
__init__
(
self
):
pass
def
__getitem__
(
self
,
index
):
return
index
def
__len__
(
self
):
return
10
class
TestDistributedBatchSampler
(
unittest
.
TestCase
):
def
test_sampler
(
self
):
dataset
=
FakeDataset
()
sampler
=
DistributedBatchSampler
(
dataset
,
batch_size
=
1
,
shuffle
=
True
)
for
batch_idx
in
sampler
:
batch_idx
pass
def
test_multiple_gpus_sampler
(
self
):
dataset
=
FakeDataset
()
sampler1
=
DistributedBatchSampler
(
dataset
,
batch_size
=
4
,
shuffle
=
True
,
drop_last
=
True
)
sampler2
=
DistributedBatchSampler
(
dataset
,
batch_size
=
4
,
shuffle
=
True
,
drop_last
=
True
)
sampler1
.
nranks
=
2
sampler1
.
local_rank
=
0
sampler1
.
num_samples
=
int
(
math
.
ceil
(
len
(
dataset
)
*
1.0
/
sampler1
.
nranks
))
sampler1
.
total_size
=
sampler1
.
num_samples
*
sampler1
.
nranks
sampler2
.
nranks
=
2
sampler2
.
local_rank
=
1
sampler2
.
num_samples
=
int
(
math
.
ceil
(
len
(
dataset
)
*
1.0
/
sampler2
.
nranks
))
sampler2
.
total_size
=
sampler2
.
num_samples
*
sampler2
.
nranks
for
batch_idx
in
sampler1
:
batch_idx
pass
for
batch_idx
in
sampler2
:
batch_idx
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/hapi/tests/test_transforms.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
paddle.incubate.hapi.vision.transforms
import
transforms
class
TestTransforms
(
unittest
.
TestCase
):
def
do_transform
(
self
,
trans
):
fake_img
=
(
np
.
random
.
random
((
400
,
300
,
3
))
*
255
).
astype
(
'uint8'
)
for
t
in
trans
:
fake_img
=
t
(
fake_img
)
def
test_color_jitter
(
self
):
trans
=
[
transforms
.
BrightnessTransform
(
0.0
),
transforms
.
HueTransform
(
0.0
),
transforms
.
SaturationTransform
(
0.0
),
transforms
.
ContrastTransform
(
0.0
),
transforms
.
ColorJitter
(
0.2
,
0.2
,
0.2
,
0.2
)
]
self
.
do_transform
(
trans
)
def
test_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
transforms
.
ContrastTransform
(
-
1.0
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
SaturationTransform
(
-
1.0
),
with
self
.
assertRaises
(
ValueError
):
transforms
.
HueTransform
(
-
1.0
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
BrightnessTransform
(
-
1.0
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/hapi/vision/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
transforms
from
.transforms
import
*
__all__
=
transforms
.
__all__
python/paddle/incubate/hapi/vision/transforms/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
transforms
from
.transforms
import
*
__all__
=
transforms
.
__all__
python/paddle/incubate/hapi/vision/transforms/transforms.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
import
cv2
import
random
import
numpy
as
np
import
collections
if
sys
.
version_info
<
(
3
,
3
):
Sequence
=
collections
.
Sequence
Iterable
=
collections
.
Iterable
else
:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
__all__
=
[
"BrightnessTransform"
,
"SaturationTransform"
,
"ContrastTransform"
,
"HueTransform"
,
"ColorJitter"
,
]
class
BrightnessTransform
(
object
):
"""Adjust brightness of the image.
Args:
value (float): How much to adjust the brightness. Can be any
non negative number. 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import BrightnessTransform
transform = BrightnessTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"brightness value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
ContrastTransform
(
object
):
"""Adjust contrast of the image.
Args:
value (float): How much to adjust the contrast. Can be any
non negative number. 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import ContrastTransform
transform = ContrastTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"contrast value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
+
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
).
mean
()
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
SaturationTransform
(
object
):
"""Adjust saturation of the image.
Args:
value (float): How much to adjust the saturation. Can be any
non negative number. 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import SaturationTransform
transform = SaturationTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"saturation value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
gray_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
gray_img
=
gray_img
[...,
np
.
newaxis
]
img
=
img
*
alpha
+
gray_img
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
HueTransform
(
object
):
"""Adjust hue of the image.
Args:
value (float): How much to adjust the hue. Can be any number
between 0 and 0.5, 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import HueTransform
transform = HueTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
or
value
>
0.5
:
raise
ValueError
(
"hue value should be in [0.0, 0.5]"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
uint8
)
hsv_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2HSV_FULL
)
h
,
s
,
v
=
cv2
.
split
(
hsv_img
)
alpha
=
np
.
random
.
uniform
(
-
self
.
value
,
self
.
value
)
h
=
h
.
astype
(
np
.
uint8
)
# uint8 addition take cares of rotation across boundaries
with
np
.
errstate
(
over
=
"ignore"
):
h
+=
np
.
uint8
(
alpha
*
255
)
hsv_img
=
cv2
.
merge
([
h
,
s
,
v
])
return
cv2
.
cvtColor
(
hsv_img
,
cv2
.
COLOR_HSV2BGR_FULL
).
astype
(
dtype
)
class
ColorJitter
(
object
):
"""Randomly change the brightness, contrast, saturation and hue of an image.
Args:
brightness: How much to jitter brightness.
Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
contrast: How much to jitter contrast.
Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
saturation: How much to jitter saturation.
Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
hue: How much to jitter hue.
Chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import ColorJitter
transform = ColorJitter(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
brightness
=
0
,
contrast
=
0
,
saturation
=
0
,
hue
=
0
):
transforms
=
[]
if
brightness
!=
0
:
transforms
.
append
(
BrightnessTransform
(
brightness
))
if
contrast
!=
0
:
transforms
.
append
(
ContrastTransform
(
contrast
))
if
saturation
!=
0
:
transforms
.
append
(
SaturationTransform
(
saturation
))
if
hue
!=
0
:
transforms
.
append
(
HueTransform
(
hue
))
random
.
shuffle
(
transforms
)
self
.
transforms
=
transforms
def
__call__
(
self
,
img
):
for
t
in
self
.
transforms
:
img
=
t
(
img
)
return
img
python/setup.py.in
浏览文件 @
43facfd3
...
...
@@ -177,6 +177,10 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.pslib',
'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils',
'paddle.incubate',
'paddle.incubate.hapi',
'paddle.incubate.hapi.vision',
'paddle.incubate.hapi.vision.transforms',
]
with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录