Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
438d2ab5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
438d2ab5
编写于
1月 22, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into dist_train_benchmark_vgg16
上级
900e911f
29603cf3
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
46 addition
and
0 deletion
+46
-0
doc/faq/local/index_cn.rst
doc/faq/local/index_cn.rst
+46
-0
未找到文件。
doc/faq/local/index_cn.rst
浏览文件 @
438d2ab5
...
@@ -211,3 +211,49 @@ decoder_inputs = paddle.layer.fc(
...
@@ -211,3 +211,49 @@ decoder_inputs = paddle.layer.fc(
* list 中元素的个数等于网络中输出层的个数;
* list 中元素的个数等于网络中输出层的个数;
* list 中每个元素是一个layer的输出结果矩阵,类型是numpy的ndarray;
* list 中每个元素是一个layer的输出结果矩阵,类型是numpy的ndarray;
* 每一个layer输出矩阵的高度,在非序列输入时:等于样本数;序列输入时等于:输入序列中元素的总数;宽度等于配置中layer的size;
* 每一个layer输出矩阵的高度,在非序列输入时:等于样本数;序列输入时等于:输入序列中元素的总数;宽度等于配置中layer的size;
6. 如何在训练过程中获得某一个layer的output
-----------------------------------------------
可以在event_handler中,通过 :code:`event.gm.getLayerOutputs("layer_name")` 获得在模型配置中某一层的name :code:`layer_name` 在当前
mini-batch forward的output的值。获得的值类型均为 :code:`numpy.ndarray` ,可以通过这个输出来完成自定义的评估指标计算等功能。例如下面代码:
.. code-block:: python
def score_diff(right_score, left_score):
return np.average(np.abs(right_score - left_score))
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 25 == 0:
diff = score_diff(
event.gm.getLayerOutputs("right_score")["right_score"][
"value"],
event.gm.getLayerOutputs("left_score")["left_score"][
"value"])
logger.info(("Pass %d Batch %d : Cost %.6f, "
"average absolute diff scores: %.6f") %
(event.pass_id, event.batch_id, event.cost, diff))
注意:此方法不能获取 :code:`paddle.layer.recurrent_group` 里step的内容,但可以获取 :code:`paddle.layer.recurrent_group` 的输出。
7. 如何在训练过程中获得参数的权重和梯度
-----------------------------------------------
在某些情况下,获得当前mini-batch的权重(或称作weights, parameters)有助于在训练时观察具体数值,方便排查以及快速定位问题。
可以通过在 :code:`event_handler` 中打印其值(注意,需要使用 :code:`paddle.event.EndForwardBackward` 保证使用GPU训练时也可以获得),
示例代码如下:
.. code-block:: python
...
parameters = paddle.parameters.create(cost)
...
def event_handler(event):
if isinstance(event, paddle.event.EndForwardBackward):
if event.batch_id % 25 == 0:
for p in parameters.keys():
logger.info("Param %s, Grad %s",
parameters.get(p), parameters.get_grad(p))
注意:“在训练过程中获得某一个layer的output”和“在训练过程中获得参数的权重和梯度”都会造成训练中的数据从C++拷贝到numpy,会对训练性能造成影响。不要在注重性能的训练场景下使用。
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录