Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
438975fd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
438975fd
编写于
1月 12, 2023
作者:
L
Leo Guo
提交者:
GitHub
1月 12, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the bugs of set_value and set_value_grad ops and add register in (#49750)
xpu2_op_list.cc. test=kunlun
上级
8fabf417
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
679 addition
and
143 deletion
+679
-143
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+10
-0
paddle/phi/kernels/xpu/set_value_grad_kernel.cc
paddle/phi/kernels/xpu/set_value_grad_kernel.cc
+352
-76
paddle/phi/kernels/xpu/set_value_kernel.cc
paddle/phi/kernels/xpu/set_value_kernel.cc
+317
-67
未找到文件。
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
438975fd
...
...
@@ -478,6 +478,16 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
FLOAT32
})},
{
"sampling_id"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT64
})},
{
"set_value"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
,
phi
::
DataType
::
FLOAT16
})},
{
"set_value_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
,
phi
::
DataType
::
FLOAT16
})},
{
"sgd"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"sgd_dense_param_sparse_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
...
...
paddle/phi/kernels/xpu/set_value_grad_kernel.cc
浏览文件 @
438975fd
// Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 202
3
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -19,103 +19,379 @@
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/strided_slice.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SetValueGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out_grad
,
const
IntArray
&
starts
,
const
IntArray
&
ends
,
const
IntArray
&
steps
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
decrease_axes
,
const
std
::
vector
<
int64_t
>&
none_axes
,
DenseTensor
*
x_grad
,
DenseTensor
*
value_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
x_grad
->
Resize
(
out_grad
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
dev_ctx
.
template
Alloc
<
T
>(
value_grad
);
const
XPUType
*
dy_data
=
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
());
XPUType
*
dx_data
=
reinterpret_cast
<
XPUType
*>
(
x_grad
->
data
<
T
>
());
XPUType
*
dv_data
=
reinterpret_cast
<
XPUType
*>
(
value_grad
->
data
<
T
>
());
std
::
vector
<
int64_t
>
starts_vec
=
starts
.
GetData
();
std
::
vector
<
int64_t
>
ends_vec
=
ends
.
GetData
();
std
::
vector
<
int64_t
>
steps_vec
=
steps
.
GetData
();
auto
dy_dims
=
out_grad
.
dims
();
std
::
vector
<
int
>
dy_shape
;
for
(
int
i
=
0
;
i
<
dy_dims
.
size
();
++
i
)
{
dy_shape
.
push_back
(
dy_dims
[
i
]);
inline
void
GetOffsets
(
const
DDim
&
big_dim
,
const
DDim
&
small_dim
,
DDim
start_offset
,
int
cur_dim
,
std
::
vector
<
DDim
>*
offsets
)
{
if
(
cur_dim
==
big_dim
.
size
())
{
offsets
->
push_back
(
start_offset
);
return
;
}
auto
dv_dims
=
value_grad
->
dims
();
std
::
vector
<
int
>
dv_shape
;
for
(
int
i
=
0
;
i
<
dv_dims
.
size
();
++
i
)
{
dv_shape
.
push_back
(
dv_dims
[
i
]);
if
(
small_dim
[
cur_dim
]
==
big_dim
[
cur_dim
])
{
GetOffsets
(
big_dim
,
small_dim
,
start_offset
,
cur_dim
+
1
,
offsets
);
}
else
{
for
(
int
i
=
0
;
i
<
big_dim
[
cur_dim
];
i
++
)
{
GetOffsets
(
big_dim
,
small_dim
,
start_offset
,
cur_dim
+
1
,
offsets
);
start_offset
[
cur_dim
]
+=
1
;
}
}
}
auto
dx_dims
=
x_grad
->
dims
();
std
::
vector
<
int
>
dx_shape
;
for
(
int
i
=
0
;
i
<
dx_dims
.
size
();
++
i
)
{
dx_shape
.
push_back
(
dx_dims
[
i
]);
}
template
<
typename
T
,
typename
Context
,
size_t
RANK
>
void
SetValueGradImpl
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out_grad
,
const
IntArray
&
starts
,
const
IntArray
&
ends
,
const
IntArray
&
steps
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
decrease_axes
,
const
std
::
vector
<
int64_t
>&
none_axes
,
DenseTensor
*
x_grad
,
DenseTensor
*
value_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
PADDLE_ENFORCE_EQ
(
out_grad
.
IsInitialized
(),
true
,
errors
::
PermissionDenied
(
"The input of `set_value_grad`(out_grad) has not been initialized"
));
auto
in_dims
=
out_grad
.
dims
();
auto
in_dims_vector
=
phi
::
vectorize
<
int64_t
>
(
in_dims
);
std
::
vector
<
int
>
decrease_axis_int32
(
decrease_axes
.
begin
(),
decrease_axes
.
end
());
std
::
vector
<
int
>
axes_int32
(
axes
.
begin
(),
axes
.
end
());
std
::
vector
<
int
>
infer_flags
(
axes
.
size
(),
1
);
std
::
vector
<
int64_t
>
out_dims_vector
(
in_dims
.
size
(),
-
1
);
std
::
vector
<
int64_t
>
starts_local
=
starts
.
GetData
();
std
::
vector
<
int64_t
>
ends_local
=
ends
.
GetData
();
std
::
vector
<
int64_t
>
steps_local
=
steps
.
GetData
();
funcs
::
StridedSliceOutDims
(
starts_local
,
ends_local
,
steps_local
,
axes_int32
,
infer_flags
,
in_dims
,
decrease_axis_int32
,
out_dims_vector
.
data
(),
axes
.
size
(),
false
);
DDim
out_dims
(
phi
::
make_ddim
(
out_dims_vector
));
std
::
vector
<
int
>
starts_vec_int32
;
for
(
size_t
i
=
0
;
i
<
starts_vec
.
size
();
++
i
)
{
starts_vec_int32
.
push_back
(
starts_vec
[
i
]);
std
::
vector
<
int
>
reverse_vector
(
starts_local
.
size
(),
0
);
funcs
::
StridedSliceFunctor
(
starts_local
.
data
(),
ends_local
.
data
(),
steps_local
.
data
(),
axes_int32
.
data
(),
reverse_vector
.
data
(),
in_dims
,
infer_flags
,
decrease_axis_int32
,
starts_local
.
size
());
std
::
vector
<
int64_t
>
starts_indices
(
RANK
,
0
);
std
::
vector
<
int64_t
>
ends_indices
(
RANK
,
0
);
std
::
vector
<
int64_t
>
steps_indices
(
RANK
,
0
);
std
::
vector
<
bool
>
reverse_axis
(
RANK
,
0
);
std
::
vector
<
int64_t
>
flip_axis
;
for
(
size_t
axis
=
0
;
axis
<
RANK
;
axis
++
)
{
starts_indices
[
axis
]
=
0
;
ends_indices
[
axis
]
=
out_dims
[
axis
];
steps_indices
[
axis
]
=
1
;
reverse_axis
[
axis
]
=
false
;
}
std
::
vector
<
int
>
ends_vec_int32
;
for
(
size_t
i
=
0
;
i
<
ends_vec
.
size
();
++
i
)
{
ends_vec_int32
.
push_back
(
ends_vec
[
i
]);
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
int
axis_index
=
axes
[
axis
];
starts_indices
[
axis_index
]
=
starts_local
[
axis
];
ends_indices
[
axis_index
]
=
ends_local
[
axis
];
steps_indices
[
axis_index
]
=
steps_local
[
axis
];
reverse_axis
[
axis_index
]
=
(
reverse_vector
[
axis
]
==
1
)
?
true
:
false
;
}
std
::
vector
<
int
>
steps_vec_int32
;
for
(
size_t
i
=
0
;
i
<
steps_vec
.
size
();
++
i
)
{
steps_vec_int32
.
push_back
(
steps_vec
[
i
]);
for
(
size_t
axis
=
0
;
axis
<
RANK
;
axis
++
)
{
if
(
reverse_axis
[
axis
])
{
flip_axis
.
push_back
(
axis
);
}
if
(
ends_indices
[
axis
]
>
in_dims
[
axis
])
{
ends_indices
[
axis
]
=
in_dims
[
axis
];
}
}
std
::
vector
<
int
>
axes_int32
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
axes_int32
.
push_back
(
axes
[
i
]);
bool
need_reverse
=
false
;
for
(
size_t
axis
=
0
;
axis
<
axes
.
size
();
axis
++
)
{
if
(
reverse_vector
[
axis
]
==
1
)
{
need_reverse
=
true
;
break
;
}
}
std
::
vector
<
int
>
decrease_axes_int32
;
for
(
size_t
i
=
0
;
i
<
decrease_axes
.
size
();
++
i
)
{
decrease_axes_int32
.
push_back
(
decrease_axes
[
i
]);
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
int
r
=
XPU_SUCCESS
;
if
(
x_grad
)
{
// Set gradient of `Input`
Copy
(
dev_ctx
,
out_grad
,
dev_ctx
.
GetPlace
(),
false
,
x_grad
);
DenseTensor
tmp
=
Full
<
T
>
(
dev_ctx
,
out_dims_vector
,
static_cast
<
T
>
(
0
));
r
=
xpu
::
strided_slice_view_update
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
tmp
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
x_grad
->
data
<
T
>
()),
out_dims_vector
,
phi
::
vectorize
<
int64_t
>
(
x_grad
->
dims
()),
starts_indices
,
ends_indices
,
steps_indices
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"strided_slice_view_update"
);
}
if
(
value_grad
)
{
dev_ctx
.
template
Alloc
<
T
>(
value_grad
);
set_zero
(
dev_ctx
,
value_grad
,
static_cast
<
T
>
(
0
));
if
(
value_grad
->
dims
()
==
out_dims
)
{
if
(
need_reverse
)
{
r
=
xpu
::
strided_slice
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
value_grad
->
data
<
T
>
()),
in_dims_vector
,
starts_indices
,
ends_indices
,
steps_indices
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"strided_slice"
);
std
::
vector
<
int
>
none_axes_int32
;
for
(
size_t
i
=
0
;
i
<
none_axes
.
size
();
++
i
)
{
none_axes_int32
.
push_back
(
none_axes
[
i
]);
r
=
xpu
::
flip
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
value_grad
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
value_grad
->
data
<
T
>
()),
out_dims_vector
,
flip_axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"flip"
);
}
else
{
r
=
xpu
::
strided_slice
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
value_grad
->
data
<
T
>
()),
in_dims_vector
,
starts_indices
,
ends_indices
,
steps_indices
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"strided_slice"
);
}
}
else
{
int
out_dims_size
=
out_dims
.
size
();
auto
value_grad_dims
=
value_grad
->
dims
();
auto
fake_value_grad_dims
=
out_dims
;
// Create an extented shape according to the rules of broadcast.
auto
value_grad_dims_size
=
value_grad_dims
.
size
();
int
num_decrease
=
0
;
int
decrease_axis_size
=
decrease_axes
.
size
();
for
(
int
i
=
0
;
i
<
out_dims_size
;
i
++
)
{
if
(
decrease_axes
.
end
()
!=
std
::
find
(
decrease_axes
.
begin
(),
decrease_axes
.
end
(),
i
))
{
fake_value_grad_dims
[
i
]
=
1
;
num_decrease
++
;
}
else
if
(
i
<
out_dims_size
-
(
value_grad_dims_size
+
decrease_axis_size
-
num_decrease
))
{
fake_value_grad_dims
[
i
]
=
1
;
}
else
{
auto
index_grad
=
i
-
(
out_dims_size
-
(
value_grad_dims_size
+
decrease_axis_size
-
num_decrease
));
fake_value_grad_dims
[
i
]
=
value_grad_dims
[
index_grad
];
PADDLE_ENFORCE_EQ
((
out_dims
[
i
]
==
value_grad_dims
[
index_grad
])
||
(
value_grad_dims
[
index_grad
]
==
1
),
true
,
errors
::
InvalidArgument
(
"An error occurred while calculating %s: "
"[%s] can not be accumulated into [%s]."
,
paddle
::
framework
::
GradVarName
(
"ValueTensor"
),
out_dims
,
value_grad_dims
));
}
}
VLOG
(
3
)
<<
"Dimensions of "
<<
paddle
::
framework
::
GradVarName
(
"ValueTensor"
)
<<
"(["
<<
value_grad_dims
<<
"])is broadcasted into ["
<<
fake_value_grad_dims
<<
"]."
;
std
::
vector
<
int64_t
>
slice_end
(
RANK
,
0
);
auto
offset
=
out_dims
;
for
(
int
i
=
0
;
i
<
out_dims_size
;
i
++
)
{
offset
[
i
]
=
0
;
}
std
::
vector
<
DDim
>
offsets
;
GetOffsets
(
out_dims
,
fake_value_grad_dims
,
offset
,
0
,
&
offsets
);
DenseTensor
tmp
=
Full
<
T
>
(
dev_ctx
,
out_dims_vector
,
static_cast
<
T
>
(
0
));
r
=
xpu
::
strided_slice
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
tmp
.
data
<
T
>
()),
in_dims_vector
,
starts_indices
,
ends_indices
,
steps_indices
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"strided_slice"
);
// accumulate gradient
DenseTensor
tmp2
=
Full
<
T
>
(
dev_ctx
,
{
fake_value_grad_dims
.
Get
(),
fake_value_grad_dims
.
size
()},
static_cast
<
T
>
(
0
));
auto
value_grad_dims_vec
=
phi
::
vectorize
<
int64_t
>
(
value_grad_dims
);
for
(
auto
offset
:
offsets
)
{
for
(
int
i
=
0
;
i
<
out_dims_size
;
i
++
)
{
slice_end
[
i
]
=
offset
[
i
]
+
fake_value_grad_dims
[
i
];
}
r
=
xpu
::
slice
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
tmp
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
tmp2
.
data
<
T
>
()),
out_dims_vector
,
phi
::
vectorize
<
int64_t
>
(
offset
),
slice_end
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"slice"
);
r
=
xpu
::
broadcast_add
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
value_grad
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
tmp2
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
value_grad
->
data
<
T
>
()),
value_grad_dims_vec
,
value_grad_dims_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast_add"
);
}
if
(
need_reverse
)
{
r
=
xpu
::
flip
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
value_grad
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
value_grad
->
data
<
T
>
()),
value_grad_dims_vec
,
flip_axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"flip"
);
}
}
}
}
template
<
typename
T
,
typename
Context
>
void
SetValueGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out_grad
,
const
IntArray
&
starts
,
const
IntArray
&
ends
,
const
IntArray
&
steps
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
decrease_axes
,
const
std
::
vector
<
int64_t
>&
none_axes
,
DenseTensor
*
x_grad
,
DenseTensor
*
value_grad
)
{
const
int
rank
=
out_grad
.
dims
().
size
();
int
r
=
xpu
::
set_value_grad
(
dev_ctx
.
x_context
(),
dy_data
,
dx_data
,
dv_data
,
dy_shape
,
dv_shape
,
starts_vec_int32
,
ends_vec_int32
,
steps_vec_int32
,
axes_int32
,
decrease_axes_int32
,
none_axes_int32
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"set_value_grad"
);
switch
(
rank
)
{
case
1
:
SetValueGradImpl
<
T
,
Context
,
1
>
(
dev_ctx
,
out_grad
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
x_grad
,
value_grad
);
break
;
case
2
:
SetValueGradImpl
<
T
,
Context
,
2
>
(
dev_ctx
,
out_grad
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
x_grad
,
value_grad
);
break
;
case
3
:
SetValueGradImpl
<
T
,
Context
,
3
>
(
dev_ctx
,
out_grad
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
x_grad
,
value_grad
);
break
;
case
4
:
SetValueGradImpl
<
T
,
Context
,
4
>
(
dev_ctx
,
out_grad
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
x_grad
,
value_grad
);
break
;
case
5
:
SetValueGradImpl
<
T
,
Context
,
5
>
(
dev_ctx
,
out_grad
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
x_grad
,
value_grad
);
break
;
case
6
:
SetValueGradImpl
<
T
,
Context
,
6
>
(
dev_ctx
,
out_grad
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
x_grad
,
value_grad
);
break
;
default:
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"The rank of set_value_grad's input should be less than 7, but "
"received %d."
,
rank
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
set_value_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
SetValueGradKernel
,
float
,
phi
::
dtype
::
float16
,
int
,
int64_t
)
{}
paddle/phi/kernels/xpu/set_value_kernel.cc
浏览文件 @
438975fd
// Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 202
3
PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -23,92 +23,324 @@
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
#include "paddle/phi/kernels/xpu/elementwise.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SetTensorValueKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
value
,
const
IntArray
&
starts
,
const
IntArray
&
ends
,
const
IntArray
&
steps
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
decrease_axes
,
const
std
::
vector
<
int64_t
>&
none_axes
,
DenseTensor
*
out
)
{
// check whether the tensor with dimension of second can assign to the
// tensor with dimension of first
inline
void
CheckIsDimsMatch
(
const
DDim
&
first
,
const
DDim
&
second
)
{
int
ignore_axis1
=
0
,
ignore_axis2
=
0
;
for
(;
ignore_axis1
<
first
.
size
();
++
ignore_axis1
)
{
if
(
first
[
ignore_axis1
]
!=
1
)
{
break
;
}
}
for
(;
ignore_axis2
<
second
.
size
();
++
ignore_axis2
)
{
if
(
second
[
ignore_axis2
]
!=
1
)
{
break
;
}
}
if
(
second
.
size
()
==
ignore_axis2
)
{
// second tensor has only one value
return
;
}
if
(
first
.
size
()
-
ignore_axis1
>=
second
.
size
()
-
ignore_axis2
)
{
auto
idx1
=
first
.
size
()
-
1
;
auto
idx2
=
second
.
size
()
-
1
;
bool
is_match
=
true
;
for
(;
idx2
>=
ignore_axis2
;
idx2
--
)
{
if
(
first
[
idx1
--
]
!=
second
[
idx2
]
&&
second
[
idx2
]
!=
1
)
{
is_match
=
false
;
break
;
}
}
if
(
is_match
)
{
return
;
}
}
PADDLE_THROW
(
errors
::
InvalidArgument
(
"The shape of tensor assigned value must match the shape "
"of target shape: %d, but now shape is %d."
,
second
.
to_str
(),
first
.
to_str
()));
}
template
<
typename
T
,
typename
Context
,
size_t
RANK
>
void
SetValueImpl
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
in
,
const
DenseTensor
&
value
,
const
IntArray
&
starts
,
const
IntArray
&
ends
,
const
IntArray
&
steps
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
decrease_axes
,
const
std
::
vector
<
int64_t
>&
none_axes
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
out
->
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
in_dims
=
in
.
dims
();
std
::
vector
<
int64_t
>
starts_local
=
starts
.
GetData
();
std
::
vector
<
int64_t
>
ends_local
=
ends
.
GetData
();
std
::
vector
<
int64_t
>
steps_local
=
steps
.
GetData
();
phi
::
funcs
::
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts_local
,
&
ends_local
,
&
steps_local
);
auto
slice_dims
=
phi
::
funcs
::
GetSliceDims
(
in_dims
,
axes
,
starts_local
,
ends_local
,
&
steps_local
);
auto
decrease_slice_dims
=
phi
::
funcs
::
GetDecreasedDims
(
slice_dims
,
decrease_axes
);
const
XPUType
*
x_data
=
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
())
;
const
XPUType
*
v_data
=
reinterpret_cast
<
const
XPUType
*>
(
value
.
data
<
T
>
());
XPUType
*
y_data
=
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
())
;
auto
slice_dims_for_assign
=
decrease_slice_dims
;
if
(
!
none_axes
.
empty
())
{
std
::
vector
<
int64_t
>
slice_dims_with_none
;
std
::
vector
<
int64_t
>
starts_vec
=
starts
.
GetData
();
std
::
vector
<
int64_t
>
ends_vec
=
ends
.
GetData
();
std
::
vector
<
int64_t
>
steps_vec
=
steps
.
GetData
();
size_t
none_axes_cur
=
0
,
decrease_axes_cur
=
0
;
for
(
int
i
=
0
;
i
<
slice_dims
.
size
();
++
i
)
{
while
(
none_axes_cur
<
none_axes
.
size
()
&&
none_axes
[
none_axes_cur
]
<=
i
)
{
slice_dims_with_none
.
push_back
(
1
);
none_axes_cur
++
;
}
if
(
decrease_axes_cur
<
decrease_axes
.
size
()
&&
decrease_axes
[
decrease_axes_cur
]
==
i
)
{
decrease_axes_cur
++
;
}
else
{
slice_dims_with_none
.
push_back
(
slice_dims
[
i
]);
}
}
while
(
none_axes_cur
<
none_axes
.
size
())
{
slice_dims_with_none
.
push_back
(
1
);
none_axes_cur
++
;
}
std
::
vector
<
int
>
starts_vec_int32
;
for
(
size_t
i
=
0
;
i
<
starts_vec
.
size
();
++
i
)
{
starts_vec_int32
.
push_back
(
starts_vec
[
i
]);
slice_dims_for_assign
=
phi
::
make_ddim
(
slice_dims_with_none
);
}
std
::
vector
<
int
>
ends_vec_int32
;
for
(
size_t
i
=
0
;
i
<
ends_vec
.
size
();
++
i
)
{
ends_vec_int32
.
push_back
(
ends_vec
[
i
]);
}
auto
place
=
dev_ctx
.
GetPlace
();
std
::
vector
<
int
>
steps_vec_int32
;
for
(
size_t
i
=
0
;
i
<
steps_vec
.
size
();
++
i
)
{
steps_vec_int32
.
push_back
(
steps_vec
[
i
]);
}
// Here copy data from input to avoid data loss at PE and Graph level.
// TODO(liym27): Speed up in the future version.
// - Q: Why don't call ShareDataWith to speed up?
// - A: Because it's not supported to ShareDataWith on OP's input and output
// https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
// - Q: Why don't delete Input, after all, the input and output are the same
// Tensor at program level?
// - A: If deleting Input, the graph will be complex, such as there will
// be two ops points to the output in graph: op1 -> output <- set_value.
// In this case, we have to find a way to handle the running order of
// set_value is what we want.
Copy
(
dev_ctx
,
in
,
place
,
false
,
out
);
std
::
vector
<
int
>
axes_int32
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
axes_int32
.
push_back
(
axes
[
i
]);
}
DenseTensor
slice_tensor
=
Empty
<
T
>
(
dev_ctx
,
IntArray
{
slice_dims
.
Get
(),
slice_dims
.
size
()});
std
::
vector
<
int
>
decrease_axes_int32
;
for
(
size_t
i
=
0
;
i
<
decrease_axes
.
size
();
++
i
)
{
decrease_axes_int32
.
push_back
(
decrease_axes
[
i
]);
}
int
in_size
=
in_dims
.
size
();
std
::
vector
<
int
>
starts_indices
(
in_size
,
0
);
std
::
vector
<
int
>
ends_indices
(
in_size
,
0
);
std
::
vector
<
int
>
strides_indices
(
in_size
,
0
);
std
::
vector
<
int
>
flip_axis
;
std
::
vector
<
int
>
none_axes_int32
;
for
(
size_t
i
=
0
;
i
<
none_axes
.
size
();
++
i
)
{
none_axes_int32
.
push_back
(
none_axes
[
i
]);
for
(
size_t
i
=
0
;
i
<
RANK
;
++
i
)
{
starts_indices
[
i
]
=
0
;
ends_indices
[
i
]
=
slice_dims
[
i
];
strides_indices
[
i
]
=
1
;
}
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
int
axis_index
=
axes
[
i
];
starts_indices
[
axis_index
]
=
starts_local
[
i
];
ends_indices
[
axis_index
]
=
ends_local
[
i
];
strides_indices
[
axis_index
]
=
steps_local
[
i
];
if
(
starts_local
[
i
]
==
ends_local
[
i
])
{
// slice is empty, data will not be changed
return
;
}
}
auto
x_dims
=
x
.
dims
();
std
::
vector
<
int
>
x_shape
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
x_shape
.
push_back
(
x_dims
[
i
]);
// Because strided_slice does not support the case of stride < 0
// temporarily, the coordinates of starts_indices, ends_indices
// and strides_indices need to be converted.
// This logic may be deleted in the future.
bool
need_flip
=
false
;
for
(
size_t
i
=
0
;
i
<
RANK
;
++
i
)
{
if
(
strides_indices
[
i
]
<
0
)
{
if
(
!
need_flip
)
{
need_flip
=
true
;
}
flip_axis
.
push_back
(
i
);
strides_indices
[
i
]
=
strides_indices
[
i
]
*
(
-
1
);
ends_indices
[
i
]
=
starts_indices
[
i
]
+
1
;
starts_indices
[
i
]
=
starts_indices
[
i
]
-
(
slice_dims
[
i
]
-
1
)
*
strides_indices
[
i
];
}
}
auto
v_dims
=
value
.
dims
();
std
::
vector
<
int
>
v_shape
;
for
(
int
i
=
0
;
i
<
v_dims
.
size
();
++
i
)
{
v_shape
.
push_back
(
v_dims
[
i
]);
auto
out_shape
=
phi
::
vectorize
<
int
>
(
out
->
dims
());
auto
slice_shape
=
phi
::
vectorize
<
int
>
(
slice_dims
);
int
r
=
XPU_SUCCESS
;
r
=
xpu
::
strided_slice
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
slice_tensor
.
data
<
T
>
()),
out_shape
,
starts_indices
,
ends_indices
,
strides_indices
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"strided_slice"
);
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
XPUType
*>
(
slice_tensor
.
data
<
T
>
()),
slice_tensor
.
numel
(),
XPUType
(
0
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
// Step 2: Set a tensor with the same shape as out tensor. And its data at
// '_index' is the same as value, and data out of '_index' to zero
// - Step 2.1 Set slice tensor with value
// NOTE(liym27): [ Why resize slice_tensor here? ]
// A: When do broadcasting on slice_tensor and value, the shape of
// slice_tensor should be decreased dims.
// e.g.
// x[:,0] = value
// x's shape = [3, 4], value's shape = [3]
// We get slice_dims = [3, 1], decrease_slice_dims = [3]
// If do broadcasting on Tensor with shape [3, 1] and [3], the result's
// shape is [3, 3], which cross the border;
// If do broadcasting on Tensor with shape [3] and [3], the result's shape
// is [3], which is right.
slice_tensor
.
Resize
(
slice_dims_for_assign
);
CheckIsDimsMatch
(
slice_dims_for_assign
,
value
.
dims
());
// XPUElementwise can do broadcasting
auto
f
=
[](
xpu
::
Context
*
ctx
,
const
XPUType
*
x
,
const
XPUType
*
y
,
XPUType
*
z
,
const
std
::
vector
<
int
>&
xshape
,
const
std
::
vector
<
int
>&
yshape
)
{
return
xpu
::
broadcast_add
<
XPUType
>
(
ctx
,
x
,
y
,
z
,
xshape
,
yshape
);
};
XPUElementwise
<
T
,
XPUType
>
(
dev_ctx
,
slice_tensor
,
value
,
-
1
,
&
slice_tensor
,
f
);
slice_tensor
.
Resize
(
slice_dims
);
// - Step 2.2 If stride < 0, flip the slice_tensor.
if
(
need_flip
)
{
r
=
xpu
::
flip
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
slice_tensor
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
slice_tensor
.
data
<
T
>
()),
slice_shape
,
flip_axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"flip"
);
}
// Step 3: Set out tensor with value
r
=
xpu
::
strided_slice_view_update
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
slice_tensor
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
slice_shape
,
out_shape
,
starts_indices
,
ends_indices
,
strides_indices
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"strided_slice_view_update"
);
}
int
r
=
xpu
::
set_value
(
dev_ctx
.
x_context
(),
x_data
,
v_data
,
y_data
,
x_shape
,
v_shape
,
starts_vec_int32
,
ends_vec_int32
,
steps_vec_int32
,
axes_int32
,
decrease_axes_int32
,
none_axes_int32
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"set_value"
);
template
<
typename
T
,
typename
Context
>
void
SetTensorValueKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
value
,
const
IntArray
&
starts
,
const
IntArray
&
ends
,
const
IntArray
&
steps
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
decrease_axes
,
const
std
::
vector
<
int64_t
>&
none_axes
,
DenseTensor
*
out
)
{
// rank是xtensor的维度信息
const
int
rank
=
x
.
dims
().
size
();
switch
(
rank
)
{
case
1
:
SetValueImpl
<
T
,
Context
,
1
>
(
dev_ctx
,
x
,
value
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
out
);
break
;
case
2
:
SetValueImpl
<
T
,
Context
,
2
>
(
dev_ctx
,
x
,
value
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
out
);
break
;
case
3
:
SetValueImpl
<
T
,
Context
,
3
>
(
dev_ctx
,
x
,
value
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
out
);
break
;
case
4
:
SetValueImpl
<
T
,
Context
,
4
>
(
dev_ctx
,
x
,
value
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
out
);
break
;
case
5
:
SetValueImpl
<
T
,
Context
,
5
>
(
dev_ctx
,
x
,
value
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
out
);
break
;
case
6
:
SetValueImpl
<
T
,
Context
,
6
>
(
dev_ctx
,
x
,
value
,
starts
,
ends
,
steps
,
axes
,
decrease_axes
,
none_axes
,
out
);
break
;
default:
PADDLE_THROW
(
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
rank
));
}
}
template
<
typename
T
,
typename
Context
>
...
...
@@ -145,3 +377,21 @@ void SetValueKernel(const Context& dev_ctx,
}
}
// namespace phi
PD_REGISTER_KERNEL
(
set_value
,
XPU
,
ALL_LAYOUT
,
phi
::
SetValueKernel
,
float
,
phi
::
dtype
::
float16
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
set_value_with_tensor
,
XPU
,
ALL_LAYOUT
,
phi
::
SetTensorValueKernel
,
float
,
phi
::
dtype
::
float16
,
int
,
int64_t
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录