Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
432ac701
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
432ac701
编写于
5月 27, 2019
作者:
Z
Zeng Jinle
提交者:
GitHub
5月 27, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
clean code of py_layer in dygraph mode,test=develop (#17661)
上级
65bbf950
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
210 addition
and
573 deletion
+210
-573
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+64
-142
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+0
-30
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+0
-51
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+0
-3
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+145
-37
paddle/fluid/pybind/imperative.h
paddle/fluid/pybind/imperative.h
+0
-23
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+0
-130
python/paddle/fluid/dygraph/layers.py
python/paddle/fluid/dygraph/layers.py
+1
-74
python/paddle/fluid/tests/unittests/test_imperative_basic.py
python/paddle/fluid/tests/unittests/test_imperative_basic.py
+0
-83
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
432ac701
...
@@ -33,11 +33,6 @@
...
@@ -33,11 +33,6 @@
namespace
paddle
{
namespace
paddle
{
namespace
imperative
{
namespace
imperative
{
const
char
*
PyLayer
::
kFwdInp
=
"X"
;
const
char
*
PyLayer
::
kFwdOut
=
"Out"
;
std
::
map
<
int
,
py
::
object
>
py_funcs_
;
using
framework
::
Variable
;
using
framework
::
Variable
;
namespace
detail
{
namespace
detail
{
...
@@ -255,94 +250,85 @@ framework::LoDTensor& VarBase::GradValue() {
...
@@ -255,94 +250,85 @@ framework::LoDTensor& VarBase::GradValue() {
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
(
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
(
BackwardSumMap
*
bck_map
,
GradientRef
*
grad_ref
,
BackwardSumMap
*
bck_map
,
GradientRef
*
grad_ref
,
const
detail
::
BackwardStrategy
&
bck_stratedy
)
{
const
detail
::
BackwardStrategy
&
bck_stratedy
)
{
PADDLE_ENFORCE
(
!
grad_op_descs_
.
empty
()
||
backward_id_
>
0
,
PADDLE_ENFORCE
(
!
grad_op_descs_
.
empty
()
,
"%s has no backward implementation"
,
"%s has no backward implementation"
,
Type
());
Type
());
VLOG
(
3
)
<<
"apply op grad: "
<<
Type
();
VLOG
(
3
)
<<
"apply op grad: "
<<
Type
();
std
::
vector
<
VarBasePtrMap
>
tmp_grad_outputs
;
std
::
vector
<
VarBasePtrMap
>
tmp_grad_outputs
;
if
(
backward_id_
>
0
)
{
const
size_t
grad_op_count
=
grad_op_descs_
.
size
();
VLOG
(
3
)
<<
"py_layer_grad"
;
tmp_grad_outputs
.
resize
(
1
);
tmp_grad_outputs
.
resize
(
grad_op_count
);
tmp_grad_outputs
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)]
=
for
(
size_t
k
=
0
;
k
<
grad_op_count
;
++
k
)
{
PyLayer
::
ApplyGrad
(
framework
::
OpDesc
*
grad_op_desc
=
grad_op_descs_
[
k
];
backward_id_
,
platform
::
RecordEvent
record_event
(
grad_op_desc
->
Type
());
grad_input_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)]);
auto
&
grad_output_variable_map
=
grad_output_vars_
[
k
];
}
else
{
VLOG
(
3
)
<<
"apply grad op "
<<
grad_op_desc
->
Type
();
const
size_t
grad_op_count
=
grad_op_descs_
.
size
();
// Allocate tmp grad output variable
tmp_grad_outputs
.
resize
(
grad_op_count
);
for
(
const
auto
&
it
:
grad_output_variable_map
)
{
for
(
size_t
k
=
0
;
k
<
grad_op_count
;
++
k
)
{
auto
&
outputs
=
tmp_grad_outputs
[
k
][
it
.
first
];
framework
::
OpDesc
*
grad_op_desc
=
grad_op_descs_
[
k
];
outputs
.
reserve
(
it
.
second
.
size
());
platform
::
RecordEvent
record_event
(
grad_op_desc
->
Type
());
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
auto
&
grad_output_variable_map
=
grad_output_vars_
[
k
];
VarBase
*
origin_grad_var_base
=
it
.
second
[
i
];
VLOG
(
3
)
<<
"apply grad op "
<<
grad_op_desc
->
Type
();
// Allocate a new variable
// Allocate tmp grad output variable
VarBase
*
tmp_grad_var_base
=
new
VarBase
(
for
(
const
auto
&
it
:
grad_output_variable_map
)
{
string
::
Sprintf
(
"%s@IGrad"
,
origin_grad_var_base
->
Name
()),
auto
&
outputs
=
tmp_grad_outputs
[
k
][
it
.
first
];
origin_grad_var_base
->
DataType
(),
origin_grad_var_base
->
Dims
(),
outputs
.
reserve
(
it
.
second
.
size
());
place_
,
true
,
false
);
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
outputs
.
emplace_back
(
tmp_grad_var_base
);
VarBase
*
origin_grad_var_base
=
it
.
second
[
i
];
// Allocate a new variable
VarBase
*
tmp_grad_var_base
=
new
VarBase
(
string
::
Sprintf
(
"%s@IGrad"
,
origin_grad_var_base
->
Name
()),
origin_grad_var_base
->
DataType
(),
origin_grad_var_base
->
Dims
(),
place_
,
true
,
false
);
outputs
.
emplace_back
(
tmp_grad_var_base
);
}
}
}
}
// No need to do compile time infer shape here.
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
// grad_op_desc_->InferShape(*block_);
// grad_op_desc->InferVarType(block_);
// grad_op_desc->InferVarType(block_);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc
);
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc
);
auto
&
info
=
framework
::
OpInfoMap
::
Instance
().
Get
(
grad_op_desc
->
Type
());
auto
&
info
=
framework
::
OpInfoMap
::
Instance
().
Get
(
grad_op_desc
->
Type
());
if
(
info
.
infer_var_type_
)
{
if
(
info
.
infer_var_type_
)
{
RuntimeInferVarTypeContext
infer_var_type_ctx
(
RuntimeInferVarTypeContext
infer_var_type_ctx
(
&
grad_input_vars_
[
k
],
&
tmp_grad_outputs
[
k
],
&
attrs_
);
&
grad_input_vars_
[
k
],
&
tmp_grad_outputs
[
k
],
&
attrs_
);
info
.
infer_var_type_
(
&
infer_var_type_ctx
);
info
.
infer_var_type_
(
&
infer_var_type_ctx
);
}
}
framework
::
OperatorWithKernel
*
op_kernel
=
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
// Run grad op
// Run grad op
framework
::
VariableValueMap
grad_invars_map
;
framework
::
VariableValueMap
grad_invars_map
;
framework
::
VariableValueMap
grad_outvars_map
;
framework
::
VariableValueMap
grad_outvars_map
;
for
(
const
auto
&
it
:
grad_input_vars_
[
k
])
{
for
(
const
auto
&
it
:
grad_input_vars_
[
k
])
{
auto
&
grad_invars
=
grad_invars_map
[
it
.
first
];
auto
&
grad_invars
=
grad_invars_map
[
it
.
first
];
grad_invars
.
reserve
(
it
.
second
.
size
());
grad_invars
.
reserve
(
it
.
second
.
size
());
for
(
const
VarBase
*
grad_inp
:
it
.
second
)
{
for
(
const
VarBase
*
grad_inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_inp
->
var_
,
"op %s input %s nullptr"
,
PADDLE_ENFORCE_NOT_NULL
(
grad_inp
->
var_
,
"op %s input %s nullptr"
,
grad_op_desc
->
Type
(),
grad_inp
->
Name
());
grad_op_desc
->
Type
(),
grad_inp
->
Name
());
grad_invars
.
emplace_back
(
grad_inp
->
var_
.
get
());
grad_invars
.
emplace_back
(
grad_inp
->
var_
.
get
());
}
}
}
}
for
(
const
auto
&
it
:
tmp_grad_outputs
[
k
])
{
for
(
const
auto
&
it
:
tmp_grad_outputs
[
k
])
{
auto
&
grad_outvars
=
grad_outvars_map
[
it
.
first
];
auto
&
grad_outvars
=
grad_outvars_map
[
it
.
first
];
grad_outvars
.
reserve
(
it
.
second
.
size
());
grad_outvars
.
reserve
(
it
.
second
.
size
());
for
(
VarBase
*
grad_out
:
it
.
second
)
{
for
(
VarBase
*
grad_out
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_out
->
var_
,
"op %s output %s nullptr"
,
PADDLE_ENFORCE_NOT_NULL
(
grad_out
->
var_
,
"op %s output %s nullptr"
,
grad_op_desc
->
Type
(),
grad_out
->
Name
());
grad_op_desc
->
Type
(),
grad_out
->
Name
());
grad_outvars
.
emplace_back
(
grad_out
->
var_
.
get
());
grad_outvars
.
emplace_back
(
grad_out
->
var_
.
get
());
}
}
}
framework
::
RuntimeContext
ctx
(
grad_invars_map
,
grad_outvars_map
);
framework
::
Scope
scope
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
,
nullptr
));
}
}
framework
::
RuntimeContext
ctx
(
grad_invars_map
,
grad_outvars_map
);
framework
::
Scope
scope
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
,
nullptr
));
}
}
platform
::
RecordEvent
record_event
(
"merge_grads"
);
platform
::
RecordEvent
record_event
(
"merge_grads"
);
...
@@ -439,69 +425,5 @@ void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) {
...
@@ -439,69 +425,5 @@ void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) {
Autograd
().
RunBackward
(
this
,
bck_stratedy
);
Autograd
().
RunBackward
(
this
,
bck_stratedy
);
}
}
void
PyLayer
::
RegisterFunc
(
int
func_id
,
const
py
::
object
&
py_func
)
{
py_funcs_
[
func_id
]
=
py_func
;
}
int
PyLayer
::
NumFuncs
()
{
return
py_funcs_
.
size
();
}
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
PyLayer
::
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
return
CallPythonFunc
(
py_funcs_
[
func_id
],
inputs
);
}
std
::
vector
<
VarBase
*>
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
auto
rets
=
CallPythonFunc
(
py_funcs_
[
func_id
],
inputs
);
std
::
vector
<
VarBase
*>
outs
;
outs
.
reserve
(
rets
.
size
());
for
(
size_t
i
=
0U
;
i
!=
rets
.
size
();
++
i
)
{
outs
.
emplace_back
(
new
VarBase
(
string
::
Sprintf
(
"%s_out_%d"
,
framework
::
GradVarName
(
PyLayer
::
kFwdOut
),
i
),
std
::
move
(
rets
[
i
]),
nullptr
,
true
));
}
return
outs
;
}
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
PyLayer
::
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
VarBase
*>&
ins
)
{
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
const
framework
::
LoDTensor
&
t
=
ins
[
i
]
->
var_
->
Get
<
framework
::
LoDTensor
>
();
in_args
[
i
]
=
t
.
IsInitialized
()
?
py
::
cast
(
t
)
:
py
::
cast
(
nullptr
);
}
VLOG
(
3
)
<<
"pyfunc in "
<<
py
::
len
(
in_args
);
// TODO(panyx0718): Who owns the returned LoDTensor.
auto
ret
=
callable
(
in_args
);
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
size_t
ret_num
=
py
::
len
(
ret_tuple
);
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
outs
;
outs
.
reserve
(
ret_num
);
VLOG
(
3
)
<<
"pyfunc out "
<<
ret_num
;
for
(
size_t
i
=
0
;
i
<
ret_num
;
++
i
)
{
try
{
auto
*
py_out_tensor
=
py
::
cast
<
framework
::
LoDTensor
*>
(
ret_tuple
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
py_out_tensor
,
"Output tensor %d should not be nullptr"
,
i
);
auto
var
=
std
::
unique_ptr
<
framework
::
Variable
>
(
new
framework
::
Variable
());
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
*
py_out_tensor
);
tensor
->
set_lod
(
py_out_tensor
->
lod
());
outs
.
emplace_back
(
std
::
move
(
var
));
}
catch
(
py
::
cast_error
&
)
{
PADDLE_THROW
(
"The %d-th output must be LoDTensor"
,
i
);
}
}
return
outs
;
}
}
// namespace imperative
}
// namespace imperative
}
// namespace paddle
}
// namespace paddle
paddle/fluid/imperative/layer.h
浏览文件 @
432ac701
...
@@ -279,8 +279,6 @@ class PYBIND11_HIDDEN OpBase {
...
@@ -279,8 +279,6 @@ class PYBIND11_HIDDEN OpBase {
OpBase
(
const
std
::
string
&
type
)
OpBase
(
const
std
::
string
&
type
)
:
type_
(
type
),
:
type_
(
type
),
trace_id_
(
-
1
),
trace_id_
(
-
1
),
forward_id_
(
-
1
),
backward_id_
(
-
1
),
place_
(
platform
::
CPUPlace
()),
place_
(
platform
::
CPUPlace
()),
backward_hooks_
()
{}
backward_hooks_
()
{}
...
@@ -335,16 +333,10 @@ class PYBIND11_HIDDEN OpBase {
...
@@ -335,16 +333,10 @@ class PYBIND11_HIDDEN OpBase {
}
}
std
::
string
type_
;
std
::
string
type_
;
// One of `trace_id_` or `forward_id_` is set, not both.
// For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_.
int
trace_id_
;
int
trace_id_
;
int
forward_id_
;
// When has backward, one of `grad_op_descs_` or `backward_id_` is set,
// not both.
// Note: each fwd op corresponds to a vector of bwd ops.
// Note: each fwd op corresponds to a vector of bwd ops.
std
::
vector
<
framework
::
OpDesc
*>
grad_op_descs_
;
std
::
vector
<
framework
::
OpDesc
*>
grad_op_descs_
;
int
backward_id_
;
platform
::
Place
place_
;
platform
::
Place
place_
;
...
@@ -373,28 +365,6 @@ class Layer {
...
@@ -373,28 +365,6 @@ class Layer {
}
}
};
};
class
PyLayer
{
public:
virtual
~
PyLayer
()
{}
static
const
char
*
kFwdInp
;
static
const
char
*
kFwdOut
;
static
void
RegisterFunc
(
int
func_id
,
const
py
::
object
&
py_func
);
static
int
NumFuncs
();
static
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
);
static
std
::
vector
<
VarBase
*>
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
);
private:
static
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
VarBase
*>&
ins
);
};
// infer var type context for imperative mode
// infer var type context for imperative mode
class
PYBIND11_HIDDEN
RuntimeInferVarTypeContext
class
PYBIND11_HIDDEN
RuntimeInferVarTypeContext
:
public
framework
::
InferVarTypeContext
{
:
public
framework
::
InferVarTypeContext
{
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
432ac701
...
@@ -290,56 +290,5 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
...
@@ -290,56 +290,5 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
return
vars_saved_for_backward
;
return
vars_saved_for_backward
;
}
}
std
::
vector
<
VarBase
*>
Tracer
::
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
)
{
VLOG
(
3
)
<<
"py_trace "
<<
op
->
Type
();
op
->
input_vars_
[
PyLayer
::
kFwdInp
]
=
inputs
;
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
ret_vars
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
op
->
TrackPreOp
(
PyLayer
::
kFwdInp
,
inputs
);
std
::
vector
<
VarBase
*>&
outputs
=
op
->
output_vars_
[
PyLayer
::
kFwdOut
];
outputs
.
reserve
(
ret_vars
.
size
());
for
(
size_t
i
=
0U
;
i
!=
ret_vars
.
size
();
++
i
)
{
VarBase
*
out
=
new
VarBase
(
string
::
Sprintf
(
"%s_out_%d"
,
op
->
Type
(),
i
),
std
::
move
(
ret_vars
[
i
]),
nullptr
,
stop_gradient
);
outputs
.
emplace_back
(
out
);
out
->
TrackPreOp
(
op
,
PyLayer
::
kFwdOut
,
i
,
stop_gradient
);
}
if
(
!
stop_gradient
)
{
VLOG
(
5
)
<<
"start construct backward op"
;
op
->
grad_input_vars_
.
resize
(
1
);
op
->
grad_output_vars_
.
resize
(
1
);
auto
&
grad_input_vars
=
op
->
grad_input_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)];
auto
&
grad_output_vars
=
op
->
grad_output_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)];
for
(
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
);
}
// TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
platform
::
CPUPlace
place
;
for
(
VarBase
*
out
:
outputs
)
{
InitGrad
(
out
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
grad_input_vars
.
push_back
(
out
->
grads_
);
}
for
(
VarBase
*
inp
:
inputs
)
{
InitGrad
(
inp
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
grad_output_vars
.
push_back
(
inp
->
grads_
);
}
}
return
outputs
;
}
}
// namespace imperative
}
// namespace imperative
}
// namespace paddle
}
// namespace paddle
paddle/fluid/imperative/tracer.h
浏览文件 @
432ac701
...
@@ -53,9 +53,6 @@ class Tracer {
...
@@ -53,9 +53,6 @@ class Tracer {
const
platform
::
Place
expected_place
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
=
false
);
const
bool
stop_gradient
=
false
);
std
::
vector
<
VarBase
*>
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
=
false
);
private:
private:
platform
::
Place
GetPlace
(
const
VarBasePtrMap
&
inputs
);
platform
::
Place
GetPlace
(
const
VarBasePtrMap
&
inputs
);
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
432ac701
...
@@ -18,8 +18,11 @@ limitations under the License. */
...
@@ -18,8 +18,11 @@ limitations under the License. */
#include <pybind11/complex.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
#include <pybind11/stl.h>
#include <memory>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/profiler.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/imperative/type_defs.h"
...
@@ -28,77 +31,182 @@ limitations under the License. */
...
@@ -28,77 +31,182 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
pybind
{
namespace
pybind
{
class
Layer
:
public
imperative
::
Layer
{
public:
using
imperative
::
Layer
::
Layer
;
// Inherit constructors
std
::
vector
<
imperative
::
VarBase
*>
Forward
(
const
std
::
vector
<
imperative
::
VarBase
*>
&
inputs
)
override
{
PYBIND11_OVERLOAD
(
std
::
vector
<
imperative
::
VarBase
*>
,
Layer
,
Forward
,
inputs
);
// NOLINT
}
};
class
PYBIND11_HIDDEN
PyOpBase
:
public
imperative
::
OpBase
{
public:
using
imperative
::
OpBase
::
OpBase
;
// Inherit constructors
PyOpBase
(
const
std
::
string
&
name
)
:
OpBase
(
name
)
{}
};
// Bind Methods
// Bind Methods
void
BindImperative
(
pybind11
::
module
*
m
)
{
void
BindImperative
(
pybind11
::
module
*
m_ptr
)
{
pybind11
::
class_
<
imperative
::
Tracer
>
(
*
m
,
"Tracer"
,
""
)
namespace
py
=
::
pybind11
;
auto
&
m
=
*
m_ptr
;
py
::
class_
<
imperative
::
detail
::
BackwardStrategy
>
backward_strategy
(
m
,
"BackwardStrategy"
,
R"DOC()DOC"
);
backward_strategy
.
def
(
py
::
init
())
.
def_property
(
"sort_sum_gradient"
,
[](
const
imperative
::
detail
::
BackwardStrategy
&
self
)
{
return
self
.
sorted_sum_gradient_
;
},
[](
imperative
::
detail
::
BackwardStrategy
&
self
,
bool
sorted_sum_gradient
)
{
self
.
sorted_sum_gradient_
=
sorted_sum_gradient
;
});
m
.
def
(
"start_imperative_gperf_profiler"
,
[]()
{
imperative
::
StartProfile
();
});
m
.
def
(
"stop_imperative_gperf_profiler"
,
[]()
{
imperative
::
StopProfile
();
});
py
::
class_
<
imperative
::
VarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<
const
std
::
string
&
,
paddle
::
framework
::
proto
::
VarType
::
Type
,
const
std
::
vector
<
int64_t
>
,
const
paddle
::
platform
::
CPUPlace
,
bool
,
bool
>
())
.
def
(
py
::
init
<
const
std
::
string
&
,
paddle
::
framework
::
proto
::
VarType
::
Type
,
const
std
::
vector
<
int64_t
>
,
const
paddle
::
platform
::
CUDAPlace
,
bool
,
bool
>
())
.
def
(
"_run_backward"
,
[](
imperative
::
VarBase
&
self
,
const
imperative
::
detail
::
BackwardStrategy
&
bckst
)
{
self
.
RunBackward
(
bckst
);
})
.
def
(
"_grad_name"
,
&
imperative
::
VarBase
::
GradName
)
.
def
(
"_grad_value"
,
&
imperative
::
VarBase
::
GradValue
)
.
def
(
"_clear_gradient"
,
&
imperative
::
VarBase
::
ClearGradient
)
.
def
(
"_grad_ivar"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
grads_
;
},
py
::
return_value_policy
::
reference
)
.
def
(
"_copy_to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CPUPlace
&
place
,
bool
blocking
)
{
return
self
.
NewVarBase
(
place
,
blocking
).
release
();
},
py
::
return_value_policy
::
take_ownership
)
.
def
(
"_copy_to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CUDAPlace
&
place
,
bool
blocking
)
{
return
self
.
NewVarBase
(
place
,
blocking
).
release
();
},
py
::
return_value_policy
::
take_ownership
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
.
get
();
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"name"
,
&
imperative
::
VarBase
::
Name
,
&
imperative
::
VarBase
::
SetName
)
.
def_property_readonly
(
"shape"
,
&
imperative
::
VarBase
::
Shape
)
.
def_property_readonly
(
"dtype"
,
&
imperative
::
VarBase
::
DataType
)
.
def_property
(
"persistable"
,
&
imperative
::
VarBase
::
IsPersistable
,
&
imperative
::
VarBase
::
SetPersistable
)
.
def_property
(
"stop_gradient"
,
&
imperative
::
VarBase
::
IsStopGradient
,
&
imperative
::
VarBase
::
SetStopGradient
);
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<
const
std
::
string
&>
())
.
def
(
"register_backward_hooks"
,
[](
imperative
::
OpBase
&
self
,
const
py
::
object
&
callable
)
{
self
.
RegisterBackwardHooks
(
callable
);
})
.
def_property
(
"_trace_id"
,
[](
const
imperative
::
OpBase
&
self
)
{
py
::
gil_scoped_release
release
;
return
self
.
trace_id_
;
},
[](
imperative
::
OpBase
&
self
,
int
trace_id
)
{
py
::
gil_scoped_release
release
;
self
.
trace_id_
=
trace_id
;
},
py
::
return_value_policy
::
reference
)
.
def_property_readonly
(
"type"
,
&
imperative
::
OpBase
::
Type
);
py
::
class_
<
imperative
::
Layer
,
Layer
/* <--- trampoline*/
>
layer
(
m
,
"Layer"
);
layer
.
def
(
py
::
init
<>
())
.
def
(
"forward"
,
[](
imperative
::
Layer
&
self
,
const
std
::
vector
<
imperative
::
VarBase
*>
&
inputs
)
{
return
self
.
Forward
(
inputs
);
});
py
::
class_
<
imperative
::
Tracer
>
(
*
m
,
"Tracer"
,
""
)
.
def
(
"__init__"
,
.
def
(
"__init__"
,
[](
imperative
::
Tracer
&
self
,
framework
::
BlockDesc
*
root_block
)
{
[](
imperative
::
Tracer
&
self
,
framework
::
BlockDesc
*
root_block
)
{
new
(
&
self
)
imperative
::
Tracer
(
root_block
);
new
(
&
self
)
imperative
::
Tracer
(
root_block
);
})
})
.
def
(
"trace"
,
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
const
imperative
::
VarBasePtrMap
&
inputs
,
const
imperative
::
VarBasePtrMap
&
inputs
,
imperative
::
VarBasePtrMap
*
outputs
,
imperative
::
VarBasePtrMap
*
outputs
,
framework
::
AttributeMap
attrs_map
,
framework
::
AttributeMap
attrs_map
,
const
platform
::
CPUPlace
expected_place
,
const
platform
::
CPUPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
const
bool
stop_gradient
=
false
)
{
pybind11
::
gil_scoped_release
release
;
py
::
gil_scoped_release
release
;
return
self
.
Trace
(
op
,
inputs
,
outputs
,
attrs_map
,
expected_place
,
stop_gradient
);
})
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
const
imperative
::
VarBasePtrMap
&
inputs
,
imperative
::
VarBasePtrMap
*
outputs
,
framework
::
AttributeMap
attrs_map
,
const
platform
::
CUDAPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
pybind11
::
gil_scoped_release
release
;
return
self
.
Trace
(
op
,
inputs
,
outputs
,
attrs_map
,
expected_place
,
return
self
.
Trace
(
op
,
inputs
,
outputs
,
attrs_map
,
expected_place
,
stop_gradient
);
stop_gradient
);
})
})
.
def
(
"py_trace"
,
&
imperative
::
Tracer
::
PyTrace
,
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
pybind11
::
return_value_policy
::
take_ownership
);
const
imperative
::
VarBasePtrMap
&
inputs
,
imperative
::
VarBasePtrMap
*
outputs
,
framework
::
AttributeMap
attrs_map
,
const
platform
::
CUDAPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
py
::
gil_scoped_release
release
;
return
self
.
Trace
(
op
,
inputs
,
outputs
,
attrs_map
,
expected_place
,
stop_gradient
);
});
// define parallel context
// define parallel context
py
bind11
::
class_
<
imperative
::
ParallelStrategy
>
parallel_strategy
(
py
::
class_
<
imperative
::
ParallelStrategy
>
parallel_strategy
(
*
m
,
"ParallelStrategy"
,
""
);
m
,
"ParallelStrategy"
,
""
);
parallel_strategy
.
def
(
py
bind11
::
init
())
parallel_strategy
.
def
(
py
::
init
())
.
def_property
(
.
def_property
(
"nranks"
,
"nranks"
,
[](
const
imperative
::
ParallelStrategy
&
self
)
{
return
self
.
nranks_
;
},
[](
const
imperative
::
ParallelStrategy
&
self
)
{
return
self
.
nranks_
;
},
[](
imperative
::
ParallelStrategy
&
self
,
int
nranks
)
{
[](
imperative
::
ParallelStrategy
&
self
,
int
nranks
)
{
self
.
nranks_
=
nranks
;
self
.
nranks_
=
nranks
;
})
})
.
def_property
(
"local_rank"
,
.
def_property
(
"local_rank"
,
[](
const
imperative
::
ParallelStrategy
&
self
)
{
[](
const
imperative
::
ParallelStrategy
&
self
)
{
return
self
.
local_rank_
;
return
self
.
local_rank_
;
},
},
[](
imperative
::
ParallelStrategy
&
self
,
int
local_rank
)
{
[](
imperative
::
ParallelStrategy
&
self
,
int
local_rank
)
{
self
.
local_rank_
=
local_rank
;
self
.
local_rank_
=
local_rank
;
})
})
.
def_property
(
.
def_property
(
"trainer_endpoints"
,
"trainer_endpoints"
,
[](
const
imperative
::
ParallelStrategy
&
self
)
{
[](
const
imperative
::
ParallelStrategy
&
self
)
{
return
self
.
trainer_endpoints_
;
return
self
.
trainer_endpoints_
;
},
},
[](
imperative
::
ParallelStrategy
&
self
,
std
::
vector
<
std
::
string
>
eps
)
{
[](
imperative
::
ParallelStrategy
&
self
,
std
::
vector
<
std
::
string
>
eps
)
{
self
.
trainer_endpoints_
=
eps
;
self
.
trainer_endpoints_
=
eps
;
})
})
.
def_property
(
"current_endpoint"
,
.
def_property
(
"current_endpoint"
,
[](
const
imperative
::
ParallelStrategy
&
self
)
{
[](
const
imperative
::
ParallelStrategy
&
self
)
{
return
self
.
current_endpoint_
;
return
self
.
current_endpoint_
;
},
},
[](
imperative
::
ParallelStrategy
&
self
,
[](
imperative
::
ParallelStrategy
&
self
,
const
std
::
string
&
ep
)
{
self
.
current_endpoint_
=
ep
;
});
const
std
::
string
&
ep
)
{
self
.
current_endpoint_
=
ep
;
});
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
py
bind11
::
class_
<
imperative
::
NCCLParallelContext
>
nccl_ctx
(
py
::
class_
<
imperative
::
NCCLParallelContext
>
nccl_ctx
(
m
,
*
m
,
"NCCLParallelContext"
);
"NCCLParallelContext"
);
nccl_ctx
nccl_ctx
.
def
(
py
bind11
::
init
<
const
imperative
::
ParallelStrategy
&
,
.
def
(
py
::
init
<
const
imperative
::
ParallelStrategy
&
,
const
platform
::
CUDAPlace
&>
())
const
platform
::
CUDAPlace
&>
())
.
def
(
"init"
,
[](
imperative
::
NCCLParallelContext
&
self
)
{
self
.
Init
();
});
.
def
(
"init"
,
[](
imperative
::
NCCLParallelContext
&
self
)
{
self
.
Init
();
});
#endif
#endif
}
}
...
...
paddle/fluid/pybind/imperative.h
浏览文件 @
432ac701
...
@@ -24,29 +24,6 @@ limitations under the License. */
...
@@ -24,29 +24,6 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
pybind
{
namespace
pybind
{
class
Layer
:
public
imperative
::
Layer
{
public:
using
imperative
::
Layer
::
Layer
;
// Inherit constructors
std
::
vector
<
imperative
::
VarBase
*>
Forward
(
const
std
::
vector
<
imperative
::
VarBase
*>&
inputs
)
override
{
PYBIND11_OVERLOAD
(
std
::
vector
<
imperative
::
VarBase
*>
,
Layer
,
Forward
,
inputs
);
// NOLINT
}
};
class
PYBIND11_HIDDEN
PyOpBase
:
public
imperative
::
OpBase
{
public:
using
imperative
::
OpBase
::
OpBase
;
// Inherit constructors
PyOpBase
(
const
std
::
string
&
name
)
:
OpBase
(
name
)
{}
};
class
PyVarBase
:
public
imperative
::
VarBase
{
public:
using
imperative
::
VarBase
::
VarBase
;
// Inherit constructors
};
void
BindImperative
(
pybind11
::
module
*
m
);
void
BindImperative
(
pybind11
::
module
*
m
);
}
// namespace pybind
}
// namespace pybind
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
432ac701
...
@@ -39,8 +39,6 @@ limitations under the License. */
...
@@ -39,8 +39,6 @@ limitations under the License. */
#include "paddle/fluid/framework/scope_pool.h"
#include "paddle/fluid/framework/scope_pool.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/profiler.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/activation_op.h"
...
@@ -190,134 +188,6 @@ PYBIND11_MODULE(core, m) {
...
@@ -190,134 +188,6 @@ PYBIND11_MODULE(core, m) {
m
.
def
(
"print_mem_usage"
,
m
.
def
(
"print_mem_usage"
,
[]()
{
return
memory
::
allocation
::
GPUMemMonitor
.
PrintMemUsage
();
});
[]()
{
return
memory
::
allocation
::
GPUMemMonitor
.
PrintMemUsage
();
});
py
::
class_
<
imperative
::
detail
::
BackwardStrategy
>
backward_strategy
(
m
,
"BackwardStrategy"
,
R"DOC()DOC"
);
backward_strategy
.
def
(
py
::
init
())
.
def_property
(
"sort_sum_gradient"
,
[](
const
imperative
::
detail
::
BackwardStrategy
&
self
)
{
return
self
.
sorted_sum_gradient_
;
},
[](
imperative
::
detail
::
BackwardStrategy
&
self
,
bool
sorted_sum_gradient
)
{
self
.
sorted_sum_gradient_
=
sorted_sum_gradient
;
});
m
.
def
(
"start_imperative_gperf_profiler"
,
[]()
{
imperative
::
StartProfile
();
});
m
.
def
(
"stop_imperative_gperf_profiler"
,
[]()
{
imperative
::
StopProfile
();
});
py
::
class_
<
imperative
::
VarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<
const
std
::
string
&
,
paddle
::
framework
::
proto
::
VarType
::
Type
,
const
std
::
vector
<
int64_t
>
,
const
paddle
::
platform
::
CPUPlace
,
bool
,
bool
>
())
.
def
(
py
::
init
<
const
std
::
string
&
,
paddle
::
framework
::
proto
::
VarType
::
Type
,
const
std
::
vector
<
int64_t
>
,
const
paddle
::
platform
::
CUDAPlace
,
bool
,
bool
>
())
.
def
(
"_run_backward"
,
[](
imperative
::
VarBase
&
self
,
const
imperative
::
detail
::
BackwardStrategy
&
bckst
)
{
self
.
RunBackward
(
bckst
);
})
.
def
(
"_grad_name"
,
&
imperative
::
VarBase
::
GradName
)
.
def
(
"_grad_value"
,
&
imperative
::
VarBase
::
GradValue
)
.
def
(
"_clear_gradient"
,
&
imperative
::
VarBase
::
ClearGradient
)
.
def
(
"_grad_ivar"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
grads_
;
},
py
::
return_value_policy
::
reference
)
.
def
(
"_copy_to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CPUPlace
&
place
,
bool
blocking
)
{
std
::
unique_ptr
<
imperative
::
VarBase
>
new_var
=
self
.
NewVarBase
(
place
,
blocking
);
return
new_var
.
release
();
},
py
::
return_value_policy
::
take_ownership
)
.
def
(
"_copy_to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CUDAPlace
&
place
,
bool
blocking
)
{
std
::
unique_ptr
<
imperative
::
VarBase
>
new_var
=
self
.
NewVarBase
(
place
,
blocking
);
return
new_var
.
release
();
},
py
::
return_value_policy
::
take_ownership
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
.
get
();
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"name"
,
&
imperative
::
VarBase
::
Name
,
&
imperative
::
VarBase
::
SetName
)
.
def_property_readonly
(
"shape"
,
&
imperative
::
VarBase
::
Shape
)
.
def_property_readonly
(
"dtype"
,
&
imperative
::
VarBase
::
DataType
)
.
def_property
(
"persistable"
,
&
imperative
::
VarBase
::
IsPersistable
,
&
imperative
::
VarBase
::
SetPersistable
)
.
def_property
(
"stop_gradient"
,
&
imperative
::
VarBase
::
IsStopGradient
,
&
imperative
::
VarBase
::
SetStopGradient
);
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<
const
std
::
string
&>
())
.
def
(
"register_backward_hooks"
,
[](
imperative
::
OpBase
&
self
,
const
py
::
object
&
callable
)
{
self
.
RegisterBackwardHooks
(
callable
);
})
.
def_property
(
"_trace_id"
,
[](
const
imperative
::
OpBase
&
self
)
{
pybind11
::
gil_scoped_release
release
;
return
self
.
trace_id_
;
},
[](
imperative
::
OpBase
&
self
,
int
trace_id
)
{
pybind11
::
gil_scoped_release
release
;
self
.
trace_id_
=
trace_id
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"forward_id"
,
[](
const
imperative
::
OpBase
&
self
)
{
return
self
.
forward_id_
;
},
[](
imperative
::
OpBase
&
self
,
int
forward_id
)
{
self
.
forward_id_
=
forward_id
;
},
py
::
return_value_policy
::
reference
)
.
def_property_readonly
(
"type"
,
&
imperative
::
OpBase
::
Type
)
.
def_property
(
"backward_id"
,
[](
const
imperative
::
OpBase
&
self
)
{
return
self
.
backward_id_
;
},
[](
imperative
::
OpBase
&
self
,
int
backward_id
)
{
self
.
backward_id_
=
backward_id
;
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
imperative
::
Layer
,
Layer
/* <--- trampoline*/
>
layer
(
m
,
"Layer"
);
layer
.
def
(
py
::
init
<>
())
.
def
(
"forward"
,
[](
imperative
::
Layer
&
self
,
const
std
::
vector
<
imperative
::
VarBase
*>
&
inputs
)
{
return
self
.
Forward
(
inputs
);
});
py
::
class_
<
imperative
::
PyLayer
>
(
m
,
"PyLayer"
)
.
def
(
py
::
init
<>
())
.
def_static
(
"apply"
,
[](
int
func_id
,
const
std
::
vector
<
imperative
::
VarBase
*>
&
inputs
)
->
std
::
vector
<
imperative
::
VarBase
*>
{
auto
ret_vars
=
imperative
::
PyLayer
::
Apply
(
func_id
,
inputs
);
std
::
vector
<
imperative
::
VarBase
*>
outputs
;
outputs
.
reserve
(
ret_vars
.
size
());
for
(
size_t
i
=
0U
;
i
!=
ret_vars
.
size
();
++
i
)
{
// TODO(minqiyang): use unique_name generator to set a name
outputs
.
emplace_back
(
new
imperative
::
VarBase
(
""
,
std
::
move
(
ret_vars
[
i
]),
nullptr
,
true
));
}
return
outputs
;
},
py
::
return_value_policy
::
take_ownership
)
.
def_static
(
"register_func"
,
[](
int
func_id
,
const
py
::
object
&
callable
)
{
imperative
::
PyLayer
::
RegisterFunc
(
func_id
,
callable
);
})
.
def_static
(
"num_funcs"
,
&
imperative
::
PyLayer
::
NumFuncs
);
BindImperative
(
&
m
);
BindImperative
(
&
m
);
py
::
class_
<
Tensor
>
(
m
,
"Tensor"
,
py
::
buffer_protocol
())
py
::
class_
<
Tensor
>
(
m
,
"Tensor"
,
py
::
buffer_protocol
())
...
...
python/paddle/fluid/dygraph/layers.py
浏览文件 @
432ac701
...
@@ -25,7 +25,7 @@ from .layer_object_helper import LayerObjectHelper
...
@@ -25,7 +25,7 @@ from .layer_object_helper import LayerObjectHelper
from
paddle.fluid
import
framework
from
paddle.fluid
import
framework
from
..param_attr
import
ParamAttr
from
..param_attr
import
ParamAttr
__all__
=
[
'Layer'
,
'PyLayer'
]
__all__
=
[
'Layer'
]
class
Layer
(
core
.
Layer
):
class
Layer
(
core
.
Layer
):
...
@@ -266,76 +266,3 @@ class Layer(core.Layer):
...
@@ -266,76 +266,3 @@ class Layer(core.Layer):
for
layer_name
,
layer_item
in
self
.
_sub_layers
.
items
():
for
layer_name
,
layer_item
in
self
.
_sub_layers
.
items
():
if
layer_item
is
not
None
:
if
layer_item
is
not
None
:
layer_item
.
load_dict
(
stat_dict
)
layer_item
.
load_dict
(
stat_dict
)
class
PyLayer
(
core
.
PyLayer
):
"""Layers composed of user-defined python codes."""
def
__init__
(
self
):
super
(
PyLayer
,
self
).
__init__
()
def
train
(
self
):
framework
.
_dygraph_tracer
().
train_mode
()
def
eval
(
self
):
framework
.
_dygraph_tracer
().
eval_mode
()
@
classmethod
def
_do_forward
(
cls
,
inputs
):
return
cls
.
_to_tuple
(
cls
.
forward
(
inputs
))
@
classmethod
def
_do_backward
(
cls
,
inputs
):
return
cls
.
_to_tuple
(
cls
.
backward
(
inputs
))
@
staticmethod
def
_to_tuple
(
inputs
):
if
not
isinstance
(
inputs
,
list
)
and
not
isinstance
(
inputs
,
tuple
):
inputs
=
[
inputs
]
ret
=
[]
for
inp
in
inputs
:
if
isinstance
(
inp
,
core
.
LoDTensor
):
ret
.
append
(
inp
)
else
:
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
inp
,
core
.
CPUPlace
())
ret
.
append
(
tensor
)
return
tuple
(
ret
)
@
staticmethod
def
forward
(
*
inputs
):
raise
NotImplementedError
@
staticmethod
def
backward
(
*
douts
):
raise
NotImplementedError
@
classmethod
def
__call__
(
cls
,
*
inputs
):
tracer
=
framework
.
_dygraph_tracer
()
block
=
framework
.
default_main_program
().
current_block
()
ivar_inputs
=
[
x
.
_ivar
for
x
in
inputs
]
if
not
hasattr
(
cls
,
'forward_id'
):
cls
.
forward_id
=
core
.
PyLayer
.
num_funcs
()
+
1
PyLayer
.
register_func
(
cls
.
forward_id
,
cls
.
_do_forward
)
cls
.
backward_id
=
core
.
PyLayer
.
num_funcs
()
+
1
PyLayer
.
register_func
(
cls
.
backward_id
,
cls
.
_do_backward
)
iop
=
core
.
OpBase
(
cls
.
__class__
.
__name__
+
str
(
cls
.
forward_id
))
iop
.
forward_id
=
cls
.
forward_id
iop
.
backward_id
=
cls
.
backward_id
block
.
ops
.
append
(
iop
)
ivars
=
tracer
.
py_trace
(
iop
,
ivar_inputs
,
False
)
ret
=
[]
for
ivar
in
ivars
:
tensor
=
ivar
.
value
().
get_tensor
()
py_var
=
framework
.
Variable
(
block
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
name
=
None
,
shape
=
tensor
.
shape
(),
dtype
=
tensor
.
_dtype
(),
ivar
=
ivar
)
ret
.
append
(
py_var
)
return
ret
python/paddle/fluid/tests/unittests/test_imperative_basic.py
浏览文件 @
432ac701
...
@@ -34,20 +34,6 @@ class MyLayer(fluid.Layer):
...
@@ -34,20 +34,6 @@ class MyLayer(fluid.Layer):
return
[
x
]
return
[
x
]
class
MyPyLayer
(
fluid
.
PyLayer
):
def
__init__
(
self
):
super
(
MyPyLayer
,
self
).
__init__
()
@
staticmethod
def
forward
(
inputs
):
return
np
.
tanh
(
inputs
[
0
])
@
staticmethod
def
backward
(
inputs
):
inp
,
out
,
dout
=
inputs
return
np
.
array
(
dout
)
*
(
1
-
np
.
square
(
np
.
array
(
out
)))
class
MLP
(
fluid
.
Layer
):
class
MLP
(
fluid
.
Layer
):
def
__init__
(
self
,
name_scope
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
super
(
MLP
,
self
).
__init__
(
name_scope
)
...
@@ -224,75 +210,6 @@ class TestImperative(unittest.TestCase):
...
@@ -224,75 +210,6 @@ class TestImperative(unittest.TestCase):
l
=
fluid
.
Layer
(
"l"
)
l
=
fluid
.
Layer
(
"l"
)
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
def
test_pylayer_func_id
(
self
):
with
fluid
.
dygraph
.
guard
():
class
PyLayer1
(
fluid
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer1
,
self
).
__init__
()
@
staticmethod
def
forward
(
input
):
return
input
@
staticmethod
def
backward
(
input
):
return
input
class
PyLayer2
(
fluid
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer2
,
self
).
__init__
()
@
staticmethod
def
forward
(
input
):
return
input
@
staticmethod
def
backward
(
input
):
return
input
py_layer_1
=
PyLayer1
()
py_layer_2
=
PyLayer2
()
py_layer_1
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
py_layer_2
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
id
=
py_layer_1
.
forward_id
self
.
assertGreater
(
id
,
0
)
self
.
assertEqual
(
py_layer_1
.
backward_id
,
id
+
1
)
self
.
assertEqual
(
py_layer_2
.
forward_id
,
id
+
2
)
self
.
assertEqual
(
py_layer_2
.
backward_id
,
id
+
3
)
py_layer_1
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
self
.
assertEqual
(
py_layer_1
.
forward_id
,
id
)
def
test_pylayer
(
self
):
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
dygraph
.
guard
():
my_py_layer
=
MyPyLayer
()
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
outs
=
my_py_layer
(
var_inp
)
dy_out
=
np
.
sum
(
outs
[
0
].
numpy
())
outs
[
0
].
backward
()
dy_grad
=
var_inp
.
gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
# TODO(panyx0718): Paddle doesn't diff against data `inp`.
x1
=
inp
*
1
# TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
x
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
tanh
(
x1
))
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
x1
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
static_out
,
static_grad
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
x
.
name
,
param_grads
[
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
def
test_layer_in_out
(
self
):
def
test_layer_in_out
(
self
):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
dygraph
.
guard
():
with
fluid
.
dygraph
.
guard
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录