Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
41d1765d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
41d1765d
编写于
1月 04, 2017
作者:
Z
Zhizhong Su
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
a missing character in line 32
上级
0e7d77f3
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
1 addition
and
1 deletion
+1
-1
doc/howto/dev/new_layer_cn.rst
doc/howto/dev/new_layer_cn.rst
+1
-1
未找到文件。
doc/howto/dev/new_layer_cn.rst
浏览文件 @
41d1765d
...
...
@@ -29,7 +29,7 @@
其中 :math:`f(.)` 是一个非线性的*激活方程*,例如sigmoid, tanh,以及Relu。
变换矩阵 :math:`W` 和偏置向量 :math:`b` 是该网络层的*参数*。一个网络层的参数是在*反向传播*时被训练的。反向传根据输出的梯度,分别计算每个参数的梯度,以及输入的梯度。优化器则用链式法则来对每个参数计算损失函数的梯度。
变换矩阵 :math:`W` 和偏置向量 :math:`b` 是该网络层的*参数*。一个网络层的参数是在*反向传播*时被训练的。反向传
播
根据输出的梯度,分别计算每个参数的梯度,以及输入的梯度。优化器则用链式法则来对每个参数计算损失函数的梯度。
假设损失函数是 :math:`c(y)` ,那么
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录