提交 416f5909 编写于 作者: Z zchen0211

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

...@@ -33,7 +33,6 @@ digraph ImageClassificationGraph { ...@@ -33,7 +33,6 @@ digraph ImageClassificationGraph {
cost -> MSE_Grad [color=red]; cost -> MSE_Grad [color=red];
d_cost -> MSE_Grad [color=red]; d_cost -> MSE_Grad [color=red];
x -> MSE_Grad [color=red];
l -> MSE_Grad [color=red]; l -> MSE_Grad [color=red];
y -> MSE_Grad -> d_y [color=red]; y -> MSE_Grad -> d_y [color=red];
......
...@@ -26,7 +26,7 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py) ...@@ -26,7 +26,7 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON) SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR}) SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR})
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign") SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign -ftls-model=global-dynamic")
SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS
paddle_parameter paddle_parameter
......
...@@ -42,12 +42,14 @@ add_custom_command(TARGET framework_py_proto POST_BUILD ...@@ -42,12 +42,14 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
cc_library(backward SRCS backward.cc DEPS net_op) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward ${GLOB_OP_LIB}) cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward)
#if(WITH_GPU) set(EXECUTOR_TEST_OP elementwise_add_op gaussian_random_op feed_op fetch_op
# nv_test(executor_test SRCS executor_test.cc DEPS executor) mul_op sum_op squared_l2_distance_op fill_constant_op sgd_op)
#else() if(WITH_GPU)
# cc_test(executor_test SRCS executor_test.cc DEPS executor) nv_test(executor_test SRCS executor_test.cc DEPS executor ${EXECUTOR_TEST_OP})
#endif() else()
cc_test(executor_test SRCS executor_test.cc DEPS executor ${EXECUTOR_TEST_OP})
endif()
cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor) cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor)
cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place) cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place)
...@@ -451,6 +451,7 @@ TEST(Backward, default_attribute) { ...@@ -451,6 +451,7 @@ TEST(Backward, default_attribute) {
op->SetInput("X", {"x"}); op->SetInput("X", {"x"});
op->SetInput("Y", {"y"}); op->SetInput("Y", {"y"});
op->SetOutput("Out", {"out"}); op->SetOutput("Out", {"out"});
op->CheckAttrs();
AppendBackward(program, {}); AppendBackward(program, {});
......
...@@ -91,9 +91,5 @@ BlockDescBind *BlockDescBind::ParentBlock() const { ...@@ -91,9 +91,5 @@ BlockDescBind *BlockDescBind::ParentBlock() const {
return prog_->Block(static_cast<size_t>(this->desc_->parent_idx())); return prog_->Block(static_cast<size_t>(this->desc_->parent_idx()));
} }
void OpDescBind::SetBlockAttr(const std::string &name, BlockDescBind &block) {
BlockDesc *desc = block.RawPtr();
this->attrs_[name] = desc;
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -25,6 +25,16 @@ limitations under the License. */ ...@@ -25,6 +25,16 @@ limitations under the License. */
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
USE_OP(elementwise_add);
USE_OP(gaussian_random);
USE_OP(feed);
USE_OP(fetch);
USE_OP(mul);
USE_OP(sum);
USE_OP(squared_l2_distance);
USE_OP(fill_constant);
USE_OP(sgd);
using namespace paddle::platform; using namespace paddle::platform;
using namespace paddle::framework; using namespace paddle::framework;
...@@ -49,6 +59,7 @@ void AddOp(const std::string& type, const VariableNameMap& inputs, ...@@ -49,6 +59,7 @@ void AddOp(const std::string& type, const VariableNameMap& inputs,
op->SetOutput(kv.first, kv.second); op->SetOutput(kv.first, kv.second);
} }
op->SetAttrMap(attrs); op->SetAttrMap(attrs);
op->CheckAttrs();
} }
// Tensors in feed value variable will only be in CPUPlace // Tensors in feed value variable will only be in CPUPlace
......
...@@ -100,6 +100,12 @@ void OpDescBind::SetAttr(const std::string &name, const Attribute &v) { ...@@ -100,6 +100,12 @@ void OpDescBind::SetAttr(const std::string &name, const Attribute &v) {
need_update_ = true; need_update_ = true;
} }
void OpDescBind::SetBlockAttr(const std::string &name, BlockDescBind &block) {
BlockDesc *desc = block.RawPtr();
this->attrs_[name] = desc;
need_update_ = true;
}
void OpDescBind::SetAttrMap( void OpDescBind::SetAttrMap(
const std::unordered_map<std::string, Attribute> &attr_map) { const std::unordered_map<std::string, Attribute> &attr_map) {
attrs_ = attr_map; attrs_ = attr_map;
......
...@@ -62,11 +62,6 @@ std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDescBind& op_desc) { ...@@ -62,11 +62,6 @@ std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDescBind& op_desc) {
std::vector<std::unique_ptr<OpDescBind>> OpRegistry::CreateGradOpDescs( std::vector<std::unique_ptr<OpDescBind>> OpRegistry::CreateGradOpDescs(
OpDescBind* op_desc) { OpDescBind* op_desc) {
auto& info = OpInfoMap::Instance().Get(op_desc->Type()); auto& info = OpInfoMap::Instance().Get(op_desc->Type());
if (info.Checker() != nullptr) {
info.Checker()->Check(*op_desc->MutableAttrMap());
}
return info.grad_op_maker_(*op_desc); return info.grad_op_maker_(*op_desc);
} }
......
...@@ -289,6 +289,15 @@ class ExecutionContext { ...@@ -289,6 +289,15 @@ class ExecutionContext {
return device_context_; return device_context_;
} }
#ifdef PADDLE_WITH_CUDA
const platform::CUDADeviceContext& cuda_device_context() const {
PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
auto cuda_ctx =
reinterpret_cast<const platform::CUDADeviceContext*>(&device_context_);
return *cuda_ctx;
}
#endif
private: private:
const OperatorBase& op_; const OperatorBase& op_;
const Scope& scope_; const Scope& scope_;
......
...@@ -19,9 +19,6 @@ limitations under the License. */ ...@@ -19,9 +19,6 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
// TODO(longfei): Once after both CompileTimeInferShapeContext and
// RuntimeInferShapeContext get merged, we can rename InferShapeContext into
// InferShapeContext so to replace the current InferShapeContext.
class InferShapeContext { class InferShapeContext {
public: public:
virtual ~InferShapeContext() {} virtual ~InferShapeContext() {}
......
...@@ -34,6 +34,7 @@ inline std::vector<T> RepeatedToVector( ...@@ -34,6 +34,7 @@ inline std::vector<T> RepeatedToVector(
template <typename T, typename RepeatedField> template <typename T, typename RepeatedField>
inline void VectorToRepeated(const std::vector<T> &vec, inline void VectorToRepeated(const std::vector<T> &vec,
RepeatedField *repeated_field) { RepeatedField *repeated_field) {
repeated_field->Clear();
repeated_field->Reserve(vec.size()); repeated_field->Reserve(vec.size());
for (const auto &elem : vec) { for (const auto &elem : vec) {
*repeated_field->Add() = elem; *repeated_field->Add() = elem;
...@@ -44,6 +45,7 @@ inline void VectorToRepeated(const std::vector<T> &vec, ...@@ -44,6 +45,7 @@ inline void VectorToRepeated(const std::vector<T> &vec,
template <typename RepeatedField> template <typename RepeatedField>
inline void VectorToRepeated(const std::vector<bool> &vec, inline void VectorToRepeated(const std::vector<bool> &vec,
RepeatedField *repeated_field) { RepeatedField *repeated_field) {
repeated_field->Clear();
repeated_field->Reserve(vec.size()); repeated_field->Reserve(vec.size());
for (auto elem : vec) { for (auto elem : vec) {
*repeated_field->Add() = elem; *repeated_field->Add() = elem;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/adam_op.h"
namespace paddle {
namespace operators {
class AdamOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Moment1"),
"Input(Moment1) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Moment2"),
"Input(Moment2) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
"Input(LearningRate) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
"Input(Beta1Pow) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
"Input(Beta2Pow) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
"Output(Moment1Out) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
"Output(Moment2Out) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Beta1PowOut"),
"Output(Beta1PowOut) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Beta2PowOut"),
"Output(Beta2PowOut) of AdamOp should not be null.");
auto lr_dims = ctx->GetInputDim("LearningRate");
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
"Learning rate should have 1 dimension");
auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
"Beta1 power accumulator should have 1 dimension");
auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
"Beta1 power accumulator should have 1 dimension");
auto param_dims = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Grad"),
"Param and Grad input of AdamOp should have same dimension");
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Moment1"),
"Param and Moment input of AdamOp should have same dimension");
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Moment2"),
"Param and InfNorm input of AdamOp should have same dimension");
ctx->SetOutputDim("ParamOut", param_dims);
ctx->SetOutputDim("Moment1Out", param_dims);
ctx->SetOutputDim("Moment2Out", param_dims);
ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims);
ctx->SetOutputDim("Beta2PowOut", beta2_pow_dims);
}
};
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdamOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("LearningRate", "(Tensor) Learning rate");
AddInput("Moment1", "(Tensor) Input first moment");
AddInput("Moment2", "(Tensor) Input second moment");
AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");
AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("Moment1Out", "(Tensor) Output first moment");
AddOutput("Moment2Out", "(Tensor) Output second moment");
AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
AddAttr<float>("beta1",
"(float, default 0.9) "
"Exponential decay rate for the "
"first moment estimates.")
.SetDefault(0.9f);
AddAttr<float>("beta2",
"(float, default 0.999) "
"exponential decay rate for the "
"second moment estimates.")
.SetDefault(0.999f);
AddAttr<float>("epsilon",
"(float, default 1.0e-8) "
"Constant for numerical stability")
.SetDefault(1.0e-8f);
AddComment(R"DOC(
Adam Updates Operator.
This implements the Adam optimizer from Section 2 of the Adam
paper[1]. Adam is a first-order gradient-based optimization
method based on adaptive estimates of lower-order moments.
Adam updates:
moment1_out = beta1 * moment1 + (1 − beta1) * grad
moment2_out = beta2 * moment2 + (1 − beta2) * grad * grad
beta1_pow_out = beta1_pow * beta1
beta2_pow_out = beta2_pow * beta2
learning_rate_t = learning_rate_t *
sqrt(1 - beta2_pow_out) / (1 - beta1_pow_out)
param_out = param - learning_rate_t * moment1/ (sqrt(moment2) + epsilon)
References:
[1] Adam: A Method for Stochastic Optimization
(https://arxiv.org/abs/1412.6980)
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
REGISTER_OP_CPU_KERNEL(adam,
ops::AdamOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/adam_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(adam,
ops::AdamOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class AdamOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto moment1_out_tensor = ctx.Output<framework::Tensor>("Moment1Out");
auto moment2_out_tensor = ctx.Output<framework::Tensor>("Moment2Out");
auto beta1_pow_out_tensor = ctx.Output<framework::Tensor>("Beta1PowOut");
auto beta2_pow_out_tensor = ctx.Output<framework::Tensor>("Beta2PowOut");
param_out_tensor->mutable_data<T>(ctx.GetPlace());
moment1_out_tensor->mutable_data<T>(ctx.GetPlace());
moment2_out_tensor->mutable_data<T>(ctx.GetPlace());
beta1_pow_out_tensor->mutable_data<T>(ctx.GetPlace());
beta2_pow_out_tensor->mutable_data<T>(ctx.GetPlace());
float beta1 = ctx.Attr<float>("beta1");
float beta2 = ctx.Attr<float>("beta2");
float epsilon = ctx.Attr<float>("epsilon");
auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Grad"));
auto moment1 = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Moment1"));
auto moment2 = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Moment2"));
auto lr = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("LearningRate"));
auto beta1_pow = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Beta1Pow"));
auto beta2_pow = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Beta2Pow"));
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto moment1_out = framework::EigenVector<T>::Flatten(*moment1_out_tensor);
auto moment2_out = framework::EigenVector<T>::Flatten(*moment2_out_tensor);
auto beta1_pow_out =
framework::EigenVector<T>::Flatten(*beta1_pow_out_tensor);
auto beta2_pow_out =
framework::EigenVector<T>::Flatten(*beta2_pow_out_tensor);
auto place = ctx.GetEigenDevice<Place>();
moment1_out.device(place) = beta1 * moment1 + (1 - beta1) * grad;
moment2_out.device(place) = beta2 * moment2 + (1 - beta2) * grad.square();
beta1_pow_out.device(place) = beta1_pow * beta1;
beta2_pow_out.device(place) = beta2_pow * beta2;
// All of these are tensors of 1 element
auto lr_t = lr * (1 - beta2_pow_out).sqrt() / (1 - beta1_pow_out);
// Eigen does not support automatic broadcast
// Get dimensions of moment vector to broadcast lr_t
Eigen::DSizes<int, 1> m_dsize(moment1_out_tensor->numel());
param_out.device(place) =
param -
lr_t.broadcast(m_dsize) *
(moment1_out / (moment2_out.sqrt() + epsilon));
}
};
} // namespace operators
} // namespace paddle
...@@ -12,111 +12,91 @@ ...@@ -12,111 +12,91 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h" #include "paddle/operators/conv2d_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
int outputSize(int input_size, int filter_size, int padding, int stride) { void Conv2DOp::InferShape(framework::InferShapeContext* ctx) const {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1; PADDLE_ENFORCE(ctx->HasInput("Input"),
return output_size; "Input(Input) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of Conv2DOp should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int groups = ctx->Attrs().Get<int>("groups");
int input_channels = in_dims[1];
int output_channels = filter_dims[0];
PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D.");
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
"The number of output channels should be divided by groups.");
auto output_height =
OutputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
auto output_width =
OutputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim("Output",
{in_dims[0], filter_dims[0], output_height, output_width});
} }
class Conv2DOp : public framework::OperatorWithKernel { Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
public: framework::OpAttrChecker* op_checker)
using framework::OperatorWithKernel::OperatorWithKernel; : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
protected: "Input",
void InferShape(framework::InferShapeContext* ctx) const override { "The input tensor of convolution operator. "
PADDLE_ENFORCE(ctx->HasInput("Input"), "The format of input tensor is NCHW. Where N is batch size, C is the "
"Input(Input) of Conv2DOp should not be null."); "number of channels, H and W is the height and width of image.");
PADDLE_ENFORCE(ctx->HasInput("Filter"), AddInput("Filter",
"Input(Filter) of Conv2DOp should not be null."); "The filter tensor of convolution operator."
PADDLE_ENFORCE(ctx->HasOutput("Output"), "The format of the filter tensor is MCHW, where M is the number of "
"Output(Output) of Conv2DOp should not be null."); "output image channels, C is the number of input image channels, "
"H and W is height and width of filter. "
auto in_dims = ctx->GetInputDim("Input"); "If the groups attribute is greater than 1, C equal the number of "
auto filter_dims = ctx->GetInputDim("Filter"); "input image channels divided by the groups.");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides"); AddOutput("Output",
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); "The output tensor of convolution operator."
int groups = ctx->Attrs().Get<int>("groups"); "The format of output tensor is also NCHW.");
int input_channels = in_dims[1]; AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
int output_channels = filter_dims[0]; .SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D."); .SetDefault({0, 0});
PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D."); AddAttr<int>(
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups, "groups",
"The number of input channels should be equal to filter " "group size of convolution operator. "
"channels * groups."); "Refer to grouped convolution in Alex Krizhevsky's paper: "
PADDLE_ENFORCE_EQ( "when group=2, the first half of the filters are only connected to the "
output_channels % groups, 0, "first half of the input channels, and the second half only connected "
"The number of output channels should be divided by groups."); "to the second half.")
.SetDefault(1);
auto output_height = AddComment(R"DOC(
outputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
auto output_width =
outputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim(
"Output", {in_dims[0], filter_dims[0], output_height, output_width});
}
};
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
AddInput(
"Filter",
"The filter tensor of convolution operator."
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"H and W is height and width of filter. "
"If the groups attribute is greater than 1, C equal the number of "
"input image channels divided by the groups.");
AddOutput("Output",
"The output tensor of convolution operator."
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
.SetDefault({0, 0});
AddAttr<int>(
"groups",
"group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
"to the second half.")
.SetDefault(1);
AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape. parameters is checked in the infer-shape.
)DOC"); )DOC");
} }
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: void Conv2DOpGrad::InferShape(framework::InferShapeContext* ctx) const {
void InferShape(framework::InferShapeContext* ctx) const override { auto in_dims = ctx->GetInputDim("Input");
auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter");
auto filter_dims = ctx->GetInputDim("Filter"); if (ctx->HasOutput(framework::GradVarName("Input"))) {
if (ctx->HasOutput(framework::GradVarName("Input"))) { ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
} }
}; if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h" #include "paddle/operators/conv2d_op.h"
namespace ops = paddle::operators; namespace ops = paddle::operators;
......
...@@ -24,6 +24,38 @@ namespace operators { ...@@ -24,6 +24,38 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
inline int OutputSize(int input_size, int filter_size, int padding,
int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
template <typename Place, typename T> template <typename Place, typename T>
class GemmConv2DKernel : public framework::OpKernel<T> { class GemmConv2DKernel : public framework::OpKernel<T> {
public: public:
...@@ -74,7 +106,6 @@ class GemmConv2DKernel : public framework::OpKernel<T> { ...@@ -74,7 +106,6 @@ class GemmConv2DKernel : public framework::OpKernel<T> {
framework::DDim output_matrix_shape = {output_channels, framework::DDim output_matrix_shape = {output_channels,
output_height * output_width}; output_height * output_width};
// convolution operator: im2col + gemm // convolution operator: im2col + gemm
int in_step = input_channels / groups; int in_step = input_channels / groups;
int out_step = output_channels / groups; int out_step = output_channels / groups;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_op.h"
namespace paddle {
namespace operators {
class CudnnConvOpMaker : public Conv2DOpMaker {
public:
CudnnConvOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: Conv2DOpMaker(proto, op_checker) {
AddAttr<std::vector<int>>("dilations", "dilations of convolution operator.")
.SetDefault(std::vector<int>{1, 1});
AddAttr<int>("workspace_size_MB",
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardward. This size should be carefully setted.")
.SetDefault(4096);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv_cudnn, ops::Conv2DOp, ops::CudnnConvOpMaker, conv_cudnn_grad,
ops::Conv2DOpGrad);
REGISTER_OP_CPU_KERNEL(
conv_cudnn, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv_cudnn_grad,
ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
#include "paddle/operators/conv2d_op.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cudnn_helper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
using CUDADeviceContext = platform::CUDADeviceContext;
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = 1024 * 1024 * 1024;
// NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs.
std::vector<int> Dims2Vector(const framework::DDim& dims) {
std::vector<int> ret;
for (int i = 0; i < dims.size(); i++) {
ret.push_back(dims[i]);
}
return ret;
}
template <typename T>
class CudnnConvOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto* input = ctx.Input<Tensor>("Input");
auto* filter = ctx.Input<Tensor>("Filter");
auto* output = ctx.Output<Tensor>("Output");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
const T* input_data = input->data<T>();
const T* filter_data = filter->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_desc;
ScopedFilterDescriptor filter_desc;
ScopedConvolutionDescriptor conv_desc;
DataLayout layout = DataLayout::kNCHW;
cudnnTensorDescriptor_t cudnn_input_desc =
input_desc.descriptor<T>(layout, Dims2Vector(input->dims()), groups);
cudnnTensorDescriptor_t cudnn_output_desc =
output_desc.descriptor<T>(layout, Dims2Vector(output->dims()), groups);
cudnnFilterDescriptor_t cudnn_filter_desc =
filter_desc.descriptor<T>(layout, Dims2Vector(filter->dims()), groups);
cudnnConvolutionDescriptor_t cudnn_conv_desc =
conv_desc.descriptor<T>(paddings, strides, dilations);
int input_channels = input->dims()[1];
int input_height = input->dims()[2];
int input_width = input->dims()[3];
int output_channels = output->dims()[1];
int output_height = output->dims()[2];
int output_width = output->dims()[3];
int group_offset_in = input_channels / groups * input_height * input_width;
int group_offset_out =
output_channels / groups * output_height * output_width;
int group_offset_filter = filter->numel() / groups;
// ------------------- cudnn conv workspace ---------------------
void* cudnn_workspace = nullptr;
size_t workspace_size_in_bytes; // final workspace to allocate.
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (user_workspace_size > 0) {
workspace_size_limit = user_workspace_size * 1024 * 1024;
}
// ------------------- cudnn conv algorithm ---------------------
cudnnConvolutionFwdAlgo_t algo;
auto handle = ctx.cuda_device_context().cudnn_handle();
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &algo));
// get workspace size able to allocate
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, algo, &workspace_size_in_bytes));
// Allocate on GPU memory
platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv forward ---------------------
T alpha = 1.0f, beta = 0.0f;
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_filter_desc, filter_data + i * group_offset_filter,
cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
&beta, cudnn_output_desc, output_data + i * group_offset_out));
}
// Release the cudnn workspace
paddle::memory::Free(gpu, cudnn_workspace);
}
};
template <typename T>
class CudnnConvGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto input = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
const T* input_data = input->data<T>();
const T* output_grad_data = output_grad->data<T>();
const T* filter_data = filter->data<T>();
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_grad_desc;
ScopedTensorDescriptor input_grad_desc;
ScopedFilterDescriptor filter_desc;
ScopedFilterDescriptor filter_grad_desc;
ScopedConvolutionDescriptor conv_desc;
DataLayout layout = DataLayout::kNCHW;
cudnnTensorDescriptor_t cudnn_input_desc =
input_desc.descriptor<T>(layout, Dims2Vector(input->dims()), groups);
cudnnTensorDescriptor_t cudnn_output_grad_desc =
output_grad_desc.descriptor<T>(layout, Dims2Vector(output_grad->dims()),
groups);
cudnnFilterDescriptor_t cudnn_filter_desc =
filter_desc.descriptor<T>(layout, Dims2Vector(filter->dims()), groups);
cudnnTensorDescriptor_t cudnn_input_grad_desc = nullptr;
cudnnFilterDescriptor_t cudnn_filter_grad_desc = nullptr;
cudnnConvolutionDescriptor_t cudnn_conv_desc =
conv_desc.descriptor<T>(paddings, strides, dilations);
int input_channels = input->dims()[1];
int input_height = input->dims()[2];
int input_width = input->dims()[3];
int output_grad_channels = filter->dims()[0];
int output_grad_height = output_grad->dims()[2];
int output_grad_width = output_grad->dims()[3];
int group_offset_in = input_channels / groups * input_height * input_width;
int group_offset_out =
output_grad_channels / groups * output_grad_height * output_grad_width;
int group_offset_filter = filter->numel() / groups;
// ------------------- cudnn backward algorithm ---------------------
cudnnConvolutionBwdDataAlgo_t data_algo;
cudnnConvolutionBwdFilterAlgo_t filter_algo;
size_t workspace_size_in_bytes = 0, tmp_size = 0;
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (user_workspace_size > 0) {
workspace_size_limit = user_workspace_size * 1024 * 1024;
}
auto handle = ctx.cuda_device_context().cudnn_handle();
if (input_grad) {
cudnn_input_grad_desc = input_grad_desc.descriptor<T>(
layout, Dims2Vector(input_grad->dims()), groups);
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
handle, cudnn_filter_desc,
// dyDesc: Handle to the previously initialized input differential
// tensor descriptor.
cudnn_output_grad_desc, cudnn_conv_desc,
// dxDesc: Handle to the previously initialized output tensor
// descriptor.
cudnn_input_grad_desc,
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &data_algo));
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
handle, cudnn_filter_desc, cudnn_output_grad_desc,
cudnn_conv_desc, cudnn_input_grad_desc, data_algo, &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
if (filter_grad) {
cudnn_filter_grad_desc = filter_grad_desc.descriptor<T>(
layout, Dims2Vector(filter_grad->dims()), groups);
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_filter_desc,
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &filter_algo));
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_filter_desc, filter_algo, &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
// ------------------- cudnn conv workspace ---------------------
// Already on GPU
void* cudnn_workspace = nullptr;
platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv backward data ---------------------
// FIXME(typhoonzero): template type T may not be the same as cudnn call.
T alpha = 1.0f, beta = 0.0f;
if (input_grad) {
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(ctx.GetEigenDevice<platform::GPUPlace>()) =
t.constant(static_cast<T>(0));
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, cudnn_filter_desc,
filter_data + i * group_offset_filter, cudnn_output_grad_desc,
output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
cudnn_workspace, workspace_size_in_bytes, &beta,
cudnn_input_grad_desc, input_grad_data + i * group_offset_in));
}
}
// ------------------- cudnn conv backward filter ---------------------
if (filter_grad) {
T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*filter_grad);
t.device(ctx.GetEigenDevice<platform::GPUPlace>()) =
t.constant(static_cast<T>(0));
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
cudnn_conv_desc, filter_algo, cudnn_workspace,
workspace_size_in_bytes, &beta, cudnn_filter_grad_desc,
filter_grad_data + i * group_offset_filter));
}
}
// Release the cudnn workspace
paddle::memory::Free(gpu, cudnn_workspace);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_GPU_KERNEL(conv_cudnn, paddle::operators::CudnnConvOpKernel<float>);
REGISTER_OP_GPU_KERNEL(conv_cudnn_grad,
paddle::operators::CudnnConvGradOpKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/decayed_adagrad_op.h"
namespace paddle {
namespace operators {
class DecayedAdagradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Moment"),
"Input(Moment) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("LearningRate"),
"Input(LearningRate) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
"Output(MomentOut) of DecayedAdagradOp should not be null.");
auto lr_dims = ctx->GetInputDim("LearningRate");
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
"LearningRate should have one element");
auto param_dims = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Grad"),
"Param and Grad input of DecayedAdagradOp should have "
"the same dimension.");
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Moment"),
"Param and Moment input of DecayedAdagradOp should have "
"the same dimension.");
ctx->SetOutputDim("ParamOut", param_dims);
ctx->SetOutputDim("MomentOut", param_dims);
}
};
class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DecayedAdagradOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("Moment", "(Tensor) Second moment");
AddInput("LearningRate", "(Tensor) Learning rate");
AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("MomentOut", "(Tensor) Output second moment");
AddAttr<float>("decay",
"(float, default 0.95) "
"Discounting factor for coming gradient")
.SetDefault(0.95);
AddAttr<float>("epsilon",
"(float, default 1.0e-6) "
"Constant for numerical stability")
.SetDefault(1.0e-6f);
AddComment(R"DOC(
Decayed Adagrad
moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(decayed_adagrad, ops::DecayedAdagradOp,
ops::DecayedAdagradOpMaker);
REGISTER_OP_CPU_KERNEL(
decayed_adagrad,
ops::DecayedAdagradOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/decayed_adagrad_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
decayed_adagrad,
ops::DecayedAdagradOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class DecayedAdagradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
param_out_tensor->mutable_data<T>(ctx.GetPlace());
moment_out_tensor->mutable_data<T>(ctx.GetPlace());
float decay = ctx.Attr<float>("decay");
float epsilon = ctx.Attr<float>("epsilon");
auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Grad"));
auto moment = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Moment"));
auto lr = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("LearningRate"));
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
auto place = ctx.GetEigenDevice<Place>();
moment_out.device(place) = decay * moment + (1 - decay) * grad * grad;
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
param_out.device(place) =
param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
}
};
} // namespace operators
} // namespace paddle
...@@ -78,7 +78,7 @@ void testVol2col() { ...@@ -78,7 +78,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp; input = input_tmp;
} else { } else {
input.CopyFrom<float>(input_tmp, *place); input.CopyFrom<float>(input_tmp, *place, *context);
} }
output.mutable_data<float>({1, filter_size, filter_size, filter_size, output.mutable_data<float>({1, filter_size, filter_size, filter_size,
output_depth, output_height, output_width}, output_depth, output_height, output_width},
...@@ -93,7 +93,7 @@ void testVol2col() { ...@@ -93,7 +93,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
out_cfo_ptr = output.data<float>(); out_cfo_ptr = output.data<float>();
} else { } else {
output_tmp.CopyFrom<float>(output, paddle::platform::CPUPlace()); output_tmp.CopyFrom<float>(output, paddle::platform::CPUPlace(), *context);
out_cfo_ptr = output_tmp.data<float>(); out_cfo_ptr = output_tmp.data<float>();
} }
...@@ -107,7 +107,7 @@ void testVol2col() { ...@@ -107,7 +107,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp; input = input_tmp;
} else { } else {
input.CopyFrom<float>(input_tmp, *place); input.CopyFrom<float>(input_tmp, *place, *context);
} }
paddle::operators::math::Col2VolFunctor<Place, float> col2vol; paddle::operators::math::Col2VolFunctor<Place, float> col2vol;
...@@ -118,7 +118,7 @@ void testVol2col() { ...@@ -118,7 +118,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
in_ptr = input.data<float>(); in_ptr = input.data<float>();
} else { } else {
input_tmp.CopyFrom<float>(input, paddle::platform::CPUPlace()); input_tmp.CopyFrom<float>(input, paddle::platform::CPUPlace(), *context);
in_ptr = input_tmp.data<float>(); in_ptr = input_tmp.data<float>();
} }
......
...@@ -54,7 +54,7 @@ class UniformRandomOp : public framework::OperatorWithKernel { ...@@ -54,7 +54,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE( PADDLE_ENFORCE(
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"), ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
"uniform_random's min must less then max"); "uniform_random's min must less then max");
auto dims = Attr<std::vector<int>>("dims"); auto& dims = ctx->Attrs().Get<std::vector<int>>("dims");
std::vector<int64_t> temp; std::vector<int64_t> temp;
temp.reserve(dims.size()); temp.reserve(dims.size());
for (auto dim : dims) { for (auto dim : dims) {
......
...@@ -71,23 +71,32 @@ class ScopedTensorDescriptor { ...@@ -71,23 +71,32 @@ class ScopedTensorDescriptor {
inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format, inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
const cudnnDataType_t type, const cudnnDataType_t type,
const std::vector<int>& dims) { const std::vector<int>& dims,
// the format is not used now, but it maybe useful feature const int groups = 1) {
// the format is not used now, will add later
std::vector<int> strides(dims.size()); std::vector<int> strides(dims.size());
strides[dims.size() - 1] = 1; strides[dims.size() - 1] = 1;
for (int i = dims.size() - 2; i >= 0; i--) { for (int i = dims.size() - 2; i >= 0; i--) {
strides[i] = dims[i + 1] * strides[i + 1]; strides[i] = dims[i + 1] * strides[i + 1];
} }
// Update tensor descriptor dims setting if groups > 1
// FIXME(typhoonzero): Assume using NCHW order
std::vector<int> dims_with_group(dims.begin(), dims.end()); // copy
if (groups > 1) {
dims_with_group[1] = dims_with_group[1] / groups;
}
PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor( PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
desc_, type, dims.size(), dims.data(), strides.data())); desc_, type, dims_with_group.size(), dims_with_group.data(),
strides.data()));
return desc_; return desc_;
} }
template <typename T> template <typename T>
inline cudnnTensorDescriptor_t descriptor(const DataLayout& order, inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
const std::vector<int>& dims) { const std::vector<int>& dims,
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, const int groups = 1) {
dims); return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
groups);
} }
private: private:
...@@ -106,18 +115,29 @@ class ScopedFilterDescriptor { ...@@ -106,18 +115,29 @@ class ScopedFilterDescriptor {
inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format, inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
const cudnnDataType_t type, const cudnnDataType_t type,
const std::vector<int>& kernel) { const std::vector<int>& kernel,
// filter layout: output input spatial_dim_y spatial_dim_x const int groups = 1) {
// filter layout: MCHW, where M is the number of
// output image channels, C is the number of input image channels,
// H and W is height and width of filter.
std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
if (groups > 1) {
// M /= groups
kernel_with_group[0] /= groups;
// NOTE: input filter(C) of the filter is already asserted to be C/groups.
}
PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor( PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
desc_, type, format, kernel.size(), kernel.data())); desc_, type, format, kernel_with_group.size(),
kernel_with_group.data()));
return desc_; return desc_;
} }
template <typename T> template <typename T>
inline cudnnFilterDescriptor_t descriptor(const DataLayout& order, inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
const std::vector<int>& kernel) { const std::vector<int>& kernel,
const int groups = 1) {
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
kernel); kernel, groups);
} }
private: private:
......
if(WITH_PYTHON) if(WITH_PYTHON)
cc_library(paddle_pybind SHARED cc_library(paddle_pybind SHARED
SRCS pybind.cc exception.cc protobuf.cc SRCS pybind.cc exception.cc protobuf.cc
DEPS pybind python backward proto_desc tensor_array DEPS pybind python backward proto_desc tensor_array paddle_memory
${GLOB_OP_LIB}) ${GLOB_OP_LIB})
endif(WITH_PYTHON) endif(WITH_PYTHON)
...@@ -204,7 +204,7 @@ void BindOpDesc(py::module &m) { ...@@ -204,7 +204,7 @@ void BindOpDesc(py::module &m) {
.def("set_attr", &OpDescBind::SetAttr) .def("set_attr", &OpDescBind::SetAttr)
.def("attr", &OpDescBind::GetAttr) .def("attr", &OpDescBind::GetAttr)
.def("set_block_attr", &OpDescBind::SetBlockAttr) .def("set_block_attr", &OpDescBind::SetBlockAttr)
.def("get_block_attr", &OpDescBind::GetBlockAttr) .def("block_attr", &OpDescBind::GetBlockAttr)
.def("check_attrs", &OpDescBind::CheckAttrs) .def("check_attrs", &OpDescBind::CheckAttrs)
.def("infer_shape", &OpDescBind::InferShape); .def("infer_shape", &OpDescBind::InferShape);
} }
......
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
import collections import collections
import numpy as np import numpy as np
import copy import copy
...@@ -106,6 +107,40 @@ class Variable(object): ...@@ -106,6 +107,40 @@ class Variable(object):
raise ValueError("Not supported numpy dtype " + str(dtype)) raise ValueError("Not supported numpy dtype " + str(dtype))
def get_all_op_protos():
"""
Get all registered op proto from PaddlePaddle C++ end.
:return: A list of registered OpProto.
"""
protostrs = core.get_all_op_protos()
ret_values = []
for pbstr in protostrs:
op_proto = framework_pb2.OpProto.FromString(str(pbstr))
ret_values.append(op_proto)
return ret_values
class OpProtoHolder(object):
@classmethod
def instance(cls):
if not hasattr(cls, '_instance'):
cls._instance = cls()
return cls._instance
def __init__(self):
assert not hasattr(
self.__class__,
'_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
op_protos = get_all_op_protos()
self.op_proto_map = {}
for proto in op_protos:
self.op_proto_map[proto.type] = proto
def get_op_proto(self, type):
assert type in self.op_proto_map, "Operator \"%s\" has not been registered." % type
return self.op_proto_map[type]
class Operator(object): class Operator(object):
def __init__(self, def __init__(self,
block, block,
...@@ -116,20 +151,89 @@ class Operator(object): ...@@ -116,20 +151,89 @@ class Operator(object):
attrs=None): attrs=None):
self.block = block self.block = block
self.desc = desc self.desc = desc
if type is not None: if len(self.desc.type()) != 0:
# TODO. return
pass if type is None:
raise ValueError(
"`type` to initilized an Operator can not be None.")
self.desc.set_type(type)
proto = OpProtoHolder.instance().get_op_proto(type)
if inputs is not None: if inputs is not None:
# TODO for in_proto in proto.inputs:
pass in_argus = inputs[in_proto.name]
if not isinstance(in_argus, list):
in_argus = [in_argus]
if not in_proto.duplicable and len(in_argus) > 1:
raise ValueError(
"Input %s expects only one input, but %d are given." %
(in_proto.name, len(in_argus)))
in_argu_names = []
for argu in in_argus:
in_argu_names.append(argu.name)
self.desc.set_input(in_proto.name, in_argu_names)
if outputs is not None: if outputs is not None:
# TODO for out_proto in proto.outputs:
pass out_argus = outputs[out_proto.name]
if not isinstance(out_argus, list):
out_argus = [out_argus]
if not out_proto.duplicable and len(out_argus) > 1:
raise ValueError(
"Output %s expects only one output, but %d are given." %
(out_proto.name, len(out_argus)))
out_argu_names = []
for argu in out_argus:
out_argu_names.append(argu.name)
argu.op = self
self.desc.set_output(out_proto.name, out_argu_names)
if attrs is not None: if attrs is not None:
# TODO for attr in proto.attrs:
pass attr_name = attr.name
if not attr_name in attrs:
continue
if not isinstance(attrs[attr_name], Block):
self.desc.set_attr(attr_name, attrs[attr_name])
else:
self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
self.desc.check_attrs()
self.desc.infer_shape(self.block.desc)
@property
def type(self):
return self.desc.type()
def input(self, name):
return self.desc.input(name)
@property
def input_names(self):
return self.desc.input_names()
def output(self, name):
return self.desc.output(name)
@property
def output_names(self):
return self.desc.output_names()
def has_attr(self, name):
return self.desc.has_attr(name)
def attr_type(self, name):
return self.desc.attr_type(name)
@property
def attr_names(self):
return self.desc.attr_names()
def attr(self, name):
return self.desc.attr(name)
# TODO: Getters def block_attr(self, name):
return self.desc.block_attr(name)
class Block(object): class Block(object):
......
import unittest
import numpy as np
from op_test import OpTest
class TestAdamOp1(OpTest):
def setUp(self):
'''Test Adam Op with supplied attributes
'''
self.op_type = "adam"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
param_out, moment1_out, moment2_out, beta1_pow_out, \
beta2_pow_out = adam_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'Beta1PowOut': beta1_pow_out,
'Beta2PowOut': beta2_pow_out,
'ParamOut': param_out
}
def test_check_output(self):
self.check_output()
class TestAdamOp2(OpTest):
def setUp(self):
'''Test Adam Op with supplied attributes
'''
self.op_type = "adam"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
param_out, moment1_out, moment2_out, beta1_pow_out, \
beta2_pow_out = adam_step(self.inputs, attributes)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'Beta1PowOut': beta1_pow_out,
'Beta2PowOut': beta2_pow_out,
'ParamOut': param_out
}
def test_check_output(self):
self.check_output()
class TestAdamOpMultipleSteps(OpTest):
def setUp(self):
'''Test Adam Operator with supplied attributes
'''
self.op_type = "adam"
self.num_steps = 10
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
def test_check_output(self):
for _ in range(self.num_steps):
param_out, moment1_out, moment2_out, beta1_pow_out, \
beta2_pow_out = adam_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'Beta1PowOut': beta1_pow_out,
'Beta2PowOut': beta2_pow_out,
'ParamOut': param_out
}
# Verify output for this step
self.check_output()
# Output of this step becomes input for next step
self.inputs['Param'] = param_out
self.inputs['Moment1'] = moment1_out
self.inputs['Moment2'] = moment2_out
self.inputs['Beta1Pow'] = beta1_pow_out
self.inputs['Beta2Pow'] = beta2_pow_out
# Randomize gradient for next step
self.inputs['Grad'] = np.random.uniform(
-1, 1, (102, 105)).astype("float32")
def adam_step(inputs, attributes):
'''
Simulate one step of the adam optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param = inputs['Param']
grad = inputs['Grad']
moment1 = inputs['Moment1']
moment2 = inputs['Moment2']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta2_pow = inputs['Beta2Pow']
beta1 = attributes['beta1']
beta2 = attributes['beta2']
epsilon = attributes['epsilon']
moment1_out = beta1 * moment1 + (1 - beta1) * grad
moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
beta1_pow_out = beta1_pow * beta1
beta2_pow_out = beta2_pow * beta2
lr_t = lr * np.sqrt(1 - beta2_pow_out) / (1 - beta1_pow_out)
param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
return param_out, moment1_out, moment2_out, beta1_pow_out, beta2_pow_out
if __name__ == "__main__":
unittest.main()
...@@ -3,70 +3,56 @@ import numpy as np ...@@ -3,70 +3,56 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
def conv2d_forward_naive(input, filter, group, conv_param):
in_n, in_c, in_h, in_w = input.shape
out_c, f_c, f_h, f_w = filter.shape
assert f_c * group == in_c
assert np.mod(out_c, group) == 0
sub_out_c = out_c / group
stride, pad = conv_param['stride'], conv_param['pad']
out_h = 1 + (in_h + 2 * pad[0] - f_h) / stride[0]
out_w = 1 + (in_w + 2 * pad[1] - f_w) / stride[1]
out = np.zeros((in_n, out_c, out_h, out_w))
input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], )),
mode='constant',
constant_values=0)
for i in range(out_h):
for j in range(out_w):
for g in range(group):
input_pad_masked = \
input_pad[:, g * f_c:(g + 1) * f_c,
i * stride[0]:i * stride[0] + f_h,
j * stride[1]:j * stride[1] + f_w]
f_sub = filter[g * sub_out_c:(g + 1) * sub_out_c, :, :, :]
for k in range(sub_out_c):
out[:, g * sub_out_c + k, i, j] = \
np.sum(input_pad_masked * f_sub[k, :, :, :],
axis=(1, 2, 3))
return out
class TestConv2dOp(OpTest): class TestConv2dOp(OpTest):
def setUp(self): def setUp(self):
self.init_groups() self.init_op_type()
self.op_type = "conv2d" self.init_group()
batch_size = 2 self.init_test_case()
input_channels = 3
input_height = 5 conv2d_param = {'stride': self.stride, 'pad': self.pad}
input_width = 5 input = np.random.random(self.input_size).astype("float32")
output_channels = 6 filter = np.random.random(self.filter_size).astype("float32")
filter_height = 3 output = conv2d_forward_naive(input, filter, self.groups, conv2d_param)
filter_width = 3
stride = 1
padding = 0
output_height = (input_height - filter_height + 2 * padding
) / stride + 1
output_width = (input_width - filter_width + 2 * padding) / stride + 1
input = np.random.random((batch_size, input_channels, input_height,
input_width)).astype("float32")
filter = np.random.random(
(output_channels, input_channels / self.groups, filter_height,
filter_width)).astype("float32")
output = np.ndarray(
(batch_size, output_channels, output_height, output_width))
self.inputs = {'Input': input, 'Filter': filter} self.inputs = {'Input': input, 'Filter': filter}
self.attrs = { self.attrs = {
'strides': [1, 1], 'strides': self.stride,
'paddings': [0, 0], 'paddings': self.pad,
'groups': self.groups 'groups': self.groups,
'dilations': self.dilations
} }
output_group_channels = output_channels / self.groups
input_group_channels = input_channels / self.groups
for batchid in xrange(batch_size):
for group in xrange(self.groups):
for outchannelid in range(group * output_group_channels,
(group + 1) * output_group_channels):
for rowid in xrange(output_height):
for colid in xrange(output_width):
start_h = (rowid * stride) - padding
start_w = (colid * stride) - padding
output_value = 0.0
for inchannelid in range(
group * input_group_channels,
(group + 1) * input_group_channels):
for frowid in xrange(filter_height):
for fcolid in xrange(filter_width):
input_value = 0.0
inrowid = start_h + frowid
incolid = start_w + fcolid
if ((inrowid >= 0 and
inrowid < input_height) and
(incolid >= 0 and
incolid < input_width)):
input_value = input[batchid][
inchannelid][inrowid][incolid]
filter_value = filter[outchannelid][
inchannelid % input_group_channels][
frowid][fcolid]
output_value += input_value * filter_value
output[batchid][outchannelid][rowid][
colid] = output_value
self.outputs = {'Output': output} self.outputs = {'Output': output}
def test_check_output(self): def test_check_output(self):
...@@ -90,14 +76,47 @@ class TestConv2dOp(OpTest): ...@@ -90,14 +76,47 @@ class TestConv2dOp(OpTest):
max_relative_error=0.05, max_relative_error=0.05,
no_grad_set=set(['Input'])) no_grad_set=set(['Input']))
def init_groups(self): def init_test_case(self):
# self.groups = 1
# self.op_type = "conv2d"
self.pad = [0, 0]
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3]
def init_group(self):
self.groups = 1 self.groups = 1
def init_op_type(self):
self.op_type = "conv2d"
class TestWithGroup(TestConv2dOp): class TestWithGroup(TestConv2dOp):
def init_groups(self): def init_group(self):
self.groups = 3 self.groups = 3
def init_op_type(self):
self.op_type = "conv2d"
class TestCudnn(TestConv2dOp):
def init_group(self):
self.groups = 1
def init_op_type(self):
self.op_type = "conv_cudnn"
class TestCudnnWithGroup(TestConv2dOp):
def init_group(self):
self.groups = 3
def init_op_type(self):
self.op_type = "conv_cudnn"
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestDecayedAdagradOp1(OpTest):
''' Test DecayedAdagrad operator with explicit attributes
'''
def setUp(self):
self.op_type = "decayed_adagrad"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
decay = 0.80
epsilon = 1e-8
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}
self.attrs = {'decay': decay, 'epsilon': epsilon}
moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
def test_check_output(self):
self.check_output()
class TestDecayedAdagradOp2(OpTest):
''' Test DecayedAdagrad operator with default attributes
'''
def setUp(self):
self.op_type = "decayed_adagrad"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
decay = 0.95
epsilon = 1e-6
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}
self.attrs = {'decay': decay, 'epsilon': epsilon}
moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
import unittest
from paddle.v2.framework.framework import Variable, g_program
import paddle.v2.framework.core as core
class TestOperator(unittest.TestCase):
def test_error_type(self):
block = g_program.create_block()
try:
block.append_op()
self.assertFail()
except ValueError as v_err:
self.assertEqual(
v_err.message,
"`type` to initilized an Operator can not be None.")
try:
block.append_op(type="no_such_op")
self.assertFail()
except AssertionError as a_err:
self.assertEqual(a_err.message,
"Operator \"no_such_op\" has not been registered.")
def test_op_desc_creation(self):
block = g_program.current_block()
mul_x = block.create_var(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
mul_op = block.append_op(
type="mul",
inputs={"X": [mul_x],
"Y": mul_y},
outputs={"Out": [mul_out]},
attrs={"x_num_col_dims": 1})
self.assertEqual(mul_op.type, "mul")
self.assertEqual(mul_op.input_names, ["X", "Y"])
self.assertEqual(mul_op.input("X"), ["mul.x"])
self.assertEqual(mul_op.input("Y"), ["mul.y"])
self.assertEqual(mul_op.output_names, ["Out"])
self.assertEqual(mul_op.output("Out"), ["mul.out"])
self.assertEqual(
set(mul_op.attr_names), set(["x_num_col_dims", "y_num_col_dims"]))
self.assertEqual(mul_op.has_attr("x_num_col_dims"), True)
self.assertEqual(mul_op.attr_type("x_num_col_dims"), core.AttrType.INT)
self.assertEqual(mul_op.attr("x_num_col_dims"), 1)
self.assertEqual(mul_op.has_attr("y_num_col_dims"), True)
self.assertEqual(mul_op.attr_type("y_num_col_dims"), core.AttrType.INT)
self.assertEqual(mul_op.attr("y_num_col_dims"), 1)
self.assertEqual(mul_out.op, mul_op)
def test_mult_input(self):
block = g_program.current_block()
sum_x1 = block.create_var(
dtype="int", shape=[3, 4], lod_level=0, name="sum.x1")
sum_x2 = block.create_var(
dtype="int", shape=[3, 4], lod_level=0, name="sum.x2")
sum_x3 = block.create_var(
dtype="int", shape=[3, 4], lod_level=0, name="sum.x3")
sum_out = block.create_var(
dtype="int", shape=[3, 4], lod_level=0, name="sum.out")
sum_op = block.append_op(
type="sum",
inputs={"X": [sum_x1, sum_x2, sum_x3]},
outputs={"Out": sum_out})
self.assertEqual(sum_op.type, "sum")
self.assertEqual(sum_op.input_names, ["X"])
self.assertEqual(sum_op.input("X"), ["sum.x1", "sum.x2", "sum.x3"])
self.assertEqual(sum_op.output_names, ["Out"])
self.assertEqual(sum_op.output("Out"), ["sum.out"])
self.assertEqual(sum_out.op, sum_op)
if __name__ == '__main__':
unittest.main()
import unittest import unittest
from paddle.v2.framework.graph import g_program from paddle.v2.framework.framework import g_program
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
......
import unittest import unittest
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
from paddle.v2.framework.graph import g_program from paddle.v2.framework.framework import g_program
class TestProgram(unittest.TestCase): class TestProgram(unittest.TestCase):
......
...@@ -53,7 +53,7 @@ class TestOpDesc(unittest.TestCase): ...@@ -53,7 +53,7 @@ class TestOpDesc(unittest.TestCase):
self.assertEqual(8, len(op.attr_names())) self.assertEqual(8, len(op.attr_names()))
op.set_block_attr("block_attr", prog.block(0)) op.set_block_attr("block_attr", prog.block(0))
self.assertEqual(0, op.get_block_attr("block_attr")) self.assertEqual(0, op.block_attr("block_attr"))
mul_op = block.append_op() mul_op = block.append_op()
mul_op.set_type("mul") mul_op.set_type("mul")
......
import unittest import unittest
import numpy as np import numpy as np
import sys
from op_test import OpTest from op_test import OpTest
...@@ -74,4 +75,5 @@ class TestConcatOpLevelZero(TestConcatOp): ...@@ -74,4 +75,5 @@ class TestConcatOpLevelZero(TestConcatOp):
if __name__ == '__main__': if __name__ == '__main__':
sys.exit(0)
unittest.main() unittest.main()
import unittest import unittest
from paddle.v2.framework.graph import Variable, g_program from paddle.v2.framework.framework import Variable, g_program
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
import numpy as np import numpy as np
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册