未验证 提交 4143a1c2 编写于 作者: Z Zeng Jinle 提交者: GitHub

Merge pull request #16491 from sneaxiy/feature/advance_gc

Fix grad op makers
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/bpr_loss_op.h" #include "paddle/fluid/operators/bpr_loss_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -127,6 +128,23 @@ neural networks>(https://arxiv.org/abs/1511.06939) ...@@ -127,6 +128,23 @@ neural networks>(https://arxiv.org/abs/1511.06939)
)DOC"); )DOC");
} }
}; };
class BprLossGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("bpr_loss_grad");
op->SetInput("X", Input("X"));
op->SetInput("Label", Input("Label"));
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -134,7 +152,7 @@ namespace ops = paddle::operators; ...@@ -134,7 +152,7 @@ namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext; using CPUCtx = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(bpr_loss, ops::BprLossOp, ops::BprLossOpMaker, REGISTER_OPERATOR(bpr_loss, ops::BprLossOp, ops::BprLossOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::BprLossGradDescMaker);
REGISTER_OPERATOR(bpr_loss_grad, ops::BprLossGradientOp); REGISTER_OPERATOR(bpr_loss_grad, ops::BprLossGradientOp);
REGISTER_OP_CPU_KERNEL(bpr_loss, ops::BprLossOpKernel<CPUCtx, float>, REGISTER_OP_CPU_KERNEL(bpr_loss, ops::BprLossOpKernel<CPUCtx, float>,
ops::BprLossOpKernel<CPUCtx, double>); ops::BprLossOpKernel<CPUCtx, double>);
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <algorithm> #include <algorithm>
#include <memory>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
...@@ -568,13 +569,31 @@ class ROIPerspectiveTransformOpMaker ...@@ -568,13 +569,31 @@ class ROIPerspectiveTransformOpMaker
} }
}; };
class ROIPerspectiveTransformGradDescMaker
: public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("roi_perspective_transform_grad");
op->SetInput("X", Input("X"));
op->SetInput("ROIs", Input("ROIs"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(roi_perspective_transform, ops::ROIPerspectiveTransformOp, REGISTER_OPERATOR(roi_perspective_transform, ops::ROIPerspectiveTransformOp,
ops::ROIPerspectiveTransformOpMaker, ops::ROIPerspectiveTransformOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::ROIPerspectiveTransformGradDescMaker);
REGISTER_OPERATOR(roi_perspective_transform_grad, REGISTER_OPERATOR(roi_perspective_transform_grad,
ops::ROIPerspectiveTransformGradOp); ops::ROIPerspectiveTransformGradOp);
REGISTER_OP_CPU_KERNEL(roi_perspective_transform, REGISTER_OP_CPU_KERNEL(roi_perspective_transform,
......
...@@ -65,11 +65,17 @@ by input arguments. ...@@ -65,11 +65,17 @@ by input arguments.
} }
}; };
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
GaussianRandomBatchSizeLikeNoNeedBufferVarsInference, "Input");
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
REGISTER_OP_WITHOUT_GRADIENT( REGISTER_OPERATOR(
gaussian_random_batch_size_like, gaussian_random_batch_size_like,
paddle::operators::GaussianRandomBatchSizeLikeOp, paddle::operators::GaussianRandomBatchSizeLikeOp,
paddle::operators::GaussianRandomBatchSizeLikeOpMaker); paddle::operators::GaussianRandomBatchSizeLikeOpMaker,
paddle::framework::EmptyGradOpMaker,
paddle::operators::GaussianRandomBatchSizeLikeNoNeedBufferVarsInference);
// Kernels are registered in gaussian_random_op.cc and gaussian_random_op.cu // Kernels are registered in gaussian_random_op.cc and gaussian_random_op.cu
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/im2sequence_op.h" #include "paddle/fluid/operators/im2sequence_op.h"
#include <memory>
#include <string> #include <string>
#include <vector> #include <vector>
...@@ -146,12 +147,28 @@ class Im2SequenceGradOp : public framework::OperatorWithKernel { ...@@ -146,12 +147,28 @@ class Im2SequenceGradOp : public framework::OperatorWithKernel {
} }
}; };
class Im2SequenceGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("im2sequence_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(im2sequence, ops::Im2SequenceOp, ops::Im2SequenceOpMaker, REGISTER_OPERATOR(im2sequence, ops::Im2SequenceOp, ops::Im2SequenceOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::Im2SequenceGradDescMaker);
REGISTER_OPERATOR(im2sequence_grad, ops::Im2SequenceGradOp); REGISTER_OPERATOR(im2sequence_grad, ops::Im2SequenceGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
im2sequence, im2sequence,
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/interpolate_op.h" #include "paddle/fluid/operators/interpolate_op.h"
#include <memory>
#include <string> #include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
...@@ -194,21 +195,46 @@ class InterpolateOpGrad : public framework::OperatorWithKernel { ...@@ -194,21 +195,46 @@ class InterpolateOpGrad : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), return framework::OpKernelType(
ctx.GetPlace()); ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
ctx.GetPlace());
}
};
class InterpolateGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType(ForwardOp().Type() + "_grad");
op->SetInput("X", Input("X"));
if (ForwardOp().Inputs().count("OutSize") > 0) {
op->SetInput("OutSize", Input("OutSize"));
}
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
} }
}; };
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(InterpolateGradNoNeedBufferVarsInference,
"X");
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker, REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad); REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
ops::InterpolateGradNoNeedBufferVarsInference);
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker, REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad); REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
ops::InterpolateGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>, REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
ops::InterpolateKernel<double>, ops::InterpolateKernel<double>,
ops::InterpolateKernel<uint8_t>); ops::InterpolateKernel<uint8_t>);
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/l1_norm_op.h" #include "paddle/fluid/operators/l1_norm_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -62,12 +63,28 @@ $$Out = \sum{|X|}$$ ...@@ -62,12 +63,28 @@ $$Out = \sum{|X|}$$
} }
}; };
class L1NormGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("l1_norm_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(l1_norm, ops::L1NormOp, ops::L1NormOpMaker, REGISTER_OPERATOR(l1_norm, ops::L1NormOp, ops::L1NormOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::L1NormGradDescMaker);
REGISTER_OPERATOR(l1_norm_grad, ops::L1NormGradOp); REGISTER_OPERATOR(l1_norm_grad, ops::L1NormGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
l1_norm, ops::L1NormKernel<paddle::platform::CPUDeviceContext, float>); l1_norm, ops::L1NormKernel<paddle::platform::CPUDeviceContext, float>);
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/label_smooth_op.h" #include "paddle/fluid/operators/label_smooth_op.h"
#include <memory>
#include <string> #include <string>
namespace paddle { namespace paddle {
...@@ -105,10 +106,23 @@ class LabelSmoothGradOp : public framework::OperatorWithKernel { ...@@ -105,10 +106,23 @@ class LabelSmoothGradOp : public framework::OperatorWithKernel {
: OperatorWithKernel(type, inputs, outputs, attrs) {} : OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null."); ctx->SetOutputDim(framework::GradVarName("X"),
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), ctx->GetInputDim(framework::GradVarName("Out")));
"Input(Out@GRAD) shouldn't be null."); }
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); };
class LabelSmoothGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("label_smooth_grad");
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
} }
}; };
...@@ -117,7 +131,7 @@ class LabelSmoothGradOp : public framework::OperatorWithKernel { ...@@ -117,7 +131,7 @@ class LabelSmoothGradOp : public framework::OperatorWithKernel {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(label_smooth, ops::LabelSmoothOp, ops::LabelSmoothOpMaker, REGISTER_OPERATOR(label_smooth, ops::LabelSmoothOp, ops::LabelSmoothOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::LabelSmoothGradDescMaker);
REGISTER_OPERATOR(label_smooth_grad, ops::LabelSmoothGradOp); REGISTER_OPERATOR(label_smooth_grad, ops::LabelSmoothGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
label_smooth, label_smooth,
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/linear_chain_crf_op.h" #include "paddle/fluid/operators/linear_chain_crf_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -250,14 +251,46 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { ...@@ -250,14 +251,46 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
} }
}; };
class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("linear_chain_crf_grad");
op->SetAttrMap(Attrs());
op->SetInput("Emission", Input("Emission"));
op->SetInput("Transition", Input("Transition"));
op->SetInput("Label", Input("Label"));
op->SetInput("Alpha", Output("Alpha"));
op->SetInput("EmissionExps", Output("EmissionExps"));
op->SetInput("TransitionExps", Output("TransitionExps"));
op->SetInput(framework::GradVarName("LogLikelihood"),
OutputGrad("LogLikelihood"));
op->SetOutput(framework::GradVarName("Emission"), InputGrad("Emission"));
op->SetOutput(framework::GradVarName("Transition"),
InputGrad("Transition"));
return op;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
LinearChainCRFGradNoNeedBufferVarsInference, "Transition", "Emission");
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp, REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
ops::LinearChainCRFOpMaker, ops::LinearChainCRFOpMaker, ops::LinearChainCRFGradDescMaker);
paddle::framework::DefaultGradOpDescMaker<true>); REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp); ops::LinearChainCRFGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
linear_chain_crf, linear_chain_crf,
ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>, ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/log_loss_op.h" #include "paddle/fluid/operators/log_loss_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -100,12 +101,29 @@ class LogLossGradOp : public framework::OperatorWithKernel { ...@@ -100,12 +101,29 @@ class LogLossGradOp : public framework::OperatorWithKernel {
} }
}; };
class LogLossGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("log_loss_grad");
op->SetInput("Predicted", Input("Predicted"));
op->SetInput("Labels", Input("Labels"));
op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
op->SetOutput(framework::GradVarName("Predicted"), InputGrad("Predicted"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>, REGISTER_OPERATOR(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>,
paddle::framework::DefaultGradOpDescMaker<true>); ops::LogLossGradDescMaker);
REGISTER_OPERATOR(log_loss_grad, ops::LogLossGradOp); REGISTER_OPERATOR(log_loss_grad, ops::LogLossGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
log_loss, ops::LogLossKernel<paddle::platform::CPUDeviceContext, float>); log_loss, ops::LogLossKernel<paddle::platform::CPUDeviceContext, float>);
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/lstm_op.h" #include "paddle/fluid/operators/lstm_op.h"
#include <memory>
#include <string> #include <string>
namespace paddle { namespace paddle {
...@@ -264,12 +265,51 @@ class LSTMGradOp : public framework::OperatorWithKernel { ...@@ -264,12 +265,51 @@ class LSTMGradOp : public framework::OperatorWithKernel {
} }
}; };
class LSTMGradOpDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("lstm_grad");
op->SetAttrMap(Attrs());
op->SetInput("Input", Input("Input"));
op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
if (ForwardOp().Inputs().count("H0") > 0) {
op->SetInput("H0", Input("H0"));
op->SetOutput(framework::GradVarName("H0"), InputGrad("H0"));
}
if (ForwardOp().Inputs().count("C0") > 0) {
op->SetInput("C0", Input("C0"));
op->SetOutput(framework::GradVarName("C0"), InputGrad("C0"));
}
op->SetInput("Weight", Input("Weight"));
op->SetOutput(framework::GradVarName("Weight"), InputGrad("Weight"));
op->SetInput("Bias", Input("Bias"));
op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
op->SetInput("Cell", Output("Cell"));
op->SetInput("Hidden", Output("Hidden"));
op->SetInput(framework::GradVarName("Hidden"), OutputGrad("Hidden"));
op->SetInput("BatchGate", Output("BatchGate"));
op->SetInput("BatchCellPreAct", Output("BatchCellPreAct"));
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker, REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::LSTMGradOpDescMaker);
REGISTER_OPERATOR(lstm_grad, ops::LSTMGradOp); REGISTER_OPERATOR(lstm_grad, ops::LSTMGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>, lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/margin_rank_loss_op.h" #include "paddle/fluid/operators/margin_rank_loss_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -94,8 +95,6 @@ class MarginRankLossGradOp : public framework::OperatorWithKernel { ...@@ -94,8 +95,6 @@ class MarginRankLossGradOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null."); "Input(Out@GRAD) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("Activated"), PADDLE_ENFORCE(ctx->HasInput("Activated"),
...@@ -106,13 +105,31 @@ class MarginRankLossGradOp : public framework::OperatorWithKernel { ...@@ -106,13 +105,31 @@ class MarginRankLossGradOp : public framework::OperatorWithKernel {
} }
}; };
class MarginRankLossGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("margin_rank_loss_grad");
op->SetInput("Activated", Output("Activated"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetInput("Label", Input("Label"));
op->SetOutput(framework::GradVarName("X1"), InputGrad("X1"));
op->SetOutput(framework::GradVarName("X2"), InputGrad("X2"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(margin_rank_loss, ops::MarginRankLossOp, REGISTER_OPERATOR(margin_rank_loss, ops::MarginRankLossOp,
ops::MarginRankLossOpMaker<float>, ops::MarginRankLossOpMaker<float>,
paddle::framework::DefaultGradOpDescMaker<true>); ops::MarginRankLossGradDescMaker);
REGISTER_OPERATOR(margin_rank_loss_grad, ops::MarginRankLossGradOp); REGISTER_OPERATOR(margin_rank_loss_grad, ops::MarginRankLossGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
margin_rank_loss, margin_rank_loss,
......
...@@ -13,7 +13,10 @@ See the License for the specific language governing permissions and ...@@ -13,7 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/mean_op.h" #include "paddle/fluid/operators/mean_op.h"
#include <memory>
#include <string> #include <string>
#include <unordered_map>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -61,7 +64,8 @@ class MeanGradOp : public framework::OperatorWithKernel { ...@@ -61,7 +64,8 @@ class MeanGradOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
auto input_data_type = ctx.Input<Tensor>("X")->type(); auto input_data_type =
ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
return framework::OpKernelType(input_data_type, ctx.GetPlace()); return framework::OpKernelType(input_data_type, ctx.GetPlace());
} }
}; };
...@@ -81,13 +85,16 @@ class MeanGradMaker : public framework::SingleGradOpDescMaker { ...@@ -81,13 +85,16 @@ class MeanGradMaker : public framework::SingleGradOpDescMaker {
} }
}; };
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(MeanGradNoNeedBufferVarsInference, "X");
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType, REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType,
ops::MeanGradMaker); ops::MeanGradMaker);
REGISTER_OPERATOR(mean_grad, ops::MeanGradOp); REGISTER_OPERATOR(mean_grad, ops::MeanGradOp,
ops::MeanGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
mean, ops::MeanKernel<paddle::platform::CPUDeviceContext, float>, mean, ops::MeanKernel<paddle::platform::CPUDeviceContext, float>,
ops::MeanKernel<paddle::platform::CPUDeviceContext, double>); ops::MeanKernel<paddle::platform::CPUDeviceContext, double>);
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/multiplex_op.h" #include "paddle/fluid/operators/multiplex_op.h"
#include <memory>
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -111,28 +113,47 @@ class MultiplexGradOp : public framework::OperatorWithKernel { ...@@ -111,28 +113,47 @@ class MultiplexGradOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null."); auto& dxs = ctx->Outputs(framework::GradVarName("X"));
PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(), PADDLE_ENFORCE(!dxs.empty(), "Output(X@Grad) should not be null.");
"Output(X@Grad) should not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null."); "Input(Out@GRAD) should not be null.");
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); auto dout_dim = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputsDim(framework::GradVarName("X"),
std::vector<framework::DDim>(dxs.size(), dout_dim));
} }
protected: protected:
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.MultiInput<Tensor>("X")[0]->type(), return framework::OpKernelType(
ctx.device_context()); ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
ctx.device_context());
}
};
class MultiplexGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("multiplex_grad");
op->SetInput("Ids", Input("Ids"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
op->SetAttrMap(Attrs());
return op;
} }
}; };
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker,
paddle::framework::DefaultGradOpDescMaker<false>); ops::MultiplexGradDescMaker);
REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp); REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
multiplex, multiplex,
......
...@@ -53,20 +53,25 @@ class MultiplexGradGPUKernel : public framework::OpKernel<T> { ...@@ -53,20 +53,25 @@ class MultiplexGradGPUKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out")); auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto ins = ctx.MultiInput<Tensor>("X");
auto* ids = ctx.Input<Tensor>("Ids"); auto* ids = ctx.Input<Tensor>("Ids");
auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X")); auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
size_t idx = -1UL;
for (size_t i = 0; i < d_ins.size(); i++) { for (size_t i = 0; i < d_ins.size(); i++) {
if (d_ins[i]) { if (d_ins[i]) {
d_ins[i]->mutable_data<T>(ctx.GetPlace()); d_ins[i]->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]); auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
t.device(*ctx.template device_context<Place>().eigen_device()) = t.device(*ctx.template device_context<Place>().eigen_device()) =
t.constant(static_cast<T>(0)); t.constant(static_cast<T>(0));
idx = i;
} }
} }
auto rows = ins[0]->dims()[0]; if (idx == -1UL) return;
auto cols = ins[0]->numel() / rows;
auto rows = d_ins[idx]->dims()[0];
auto cols = d_ins[idx]->numel() / rows;
// copy index to cpu // copy index to cpu
Tensor index_t_cpu; Tensor index_t_cpu;
TensorCopySync(*ids, platform::CPUPlace(), &index_t_cpu); TensorCopySync(*ids, platform::CPUPlace(), &index_t_cpu);
......
...@@ -52,20 +52,25 @@ class MultiplexGradCPUKernel : public framework::OpKernel<T> { ...@@ -52,20 +52,25 @@ class MultiplexGradCPUKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* ids = ctx.Input<framework::Tensor>("Ids"); auto* ids = ctx.Input<framework::Tensor>("Ids");
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto d_ins = auto d_ins =
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X")); ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
size_t idx = -1UL;
for (size_t i = 0; i < d_ins.size(); i++) { for (size_t i = 0; i < d_ins.size(); i++) {
if (d_ins[i]) { if (d_ins[i]) {
d_ins[i]->mutable_data<T>(ctx.GetPlace()); d_ins[i]->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]); auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
t.device(*ctx.template device_context<DeviceContext>().eigen_device()) = t.device(*ctx.template device_context<DeviceContext>().eigen_device()) =
t.constant(static_cast<T>(0)); t.constant(static_cast<T>(0));
idx = i;
} }
} }
auto rows = ins[0]->dims()[0]; if (idx == -1UL) return;
auto cols = ins[0]->numel() / rows;
auto rows = d_ins[idx]->dims()[0];
auto cols = d_ins[idx]->numel() / rows;
auto* index = ids->data<int32_t>(); auto* index = ids->data<int32_t>();
platform::CPUPlace place = boost::get<platform::CPUPlace>(ctx.GetPlace()); platform::CPUPlace place = boost::get<platform::CPUPlace>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) { for (auto i = 0; i < rows; i++) {
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/pad_op.h" #include "paddle/fluid/operators/pad_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -29,7 +30,7 @@ class PadOp : public framework::OperatorWithKernel { ...@@ -29,7 +30,7 @@ class PadOp : public framework::OperatorWithKernel {
"Output(Out) of PadOp should not be null."); "Output(Out) of PadOp should not be null.");
auto x_dim = ctx->GetInputDim("X"); auto x_dim = ctx->GetInputDim("X");
auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()), PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
"Size of paddings should be equal to 2 * dimension size " "Size of paddings should be equal to 2 * dimension size "
"of input tensor."); "of input tensor.");
...@@ -99,13 +100,20 @@ class PadOpGrad : public framework::OperatorWithKernel { ...@@ -99,13 +100,20 @@ class PadOpGrad : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
"Input(Out@GRAD) should not be null"); for (int i = 0; i < dout_dims.size(); ++i) {
auto x_dims = ctx->GetInputDim("X"); dout_dims[i] -= (paddings[i * 2] + paddings[i * 2 + 1]);
}
auto x_grad_name = framework::GradVarName("X"); auto x_grad_name = framework::GradVarName("X");
if (ctx->HasOutput(x_grad_name)) { if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims); auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
for (int i = 0; i < dout_dims.size(); ++i) {
dout_dims[i] -= (paddings[i * 2] + paddings[i * 2 + 1]);
}
ctx->SetOutputDim(x_grad_name, dout_dims);
} }
} }
}; };
...@@ -117,7 +125,6 @@ class PadOpGradMaker : public framework::SingleGradOpDescMaker { ...@@ -117,7 +125,6 @@ class PadOpGradMaker : public framework::SingleGradOpDescMaker {
protected: protected:
std::unique_ptr<framework::OpDesc> Apply() const override { std::unique_ptr<framework::OpDesc> Apply() const override {
auto* bind = new framework::OpDesc(); auto* bind = new framework::OpDesc();
bind->SetInput("X", Input("X"));
bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
bind->SetOutput(framework::GradVarName("X"), InputGrad("X")); bind->SetOutput(framework::GradVarName("X"), InputGrad("X"));
bind->SetAttrMap(Attrs()); bind->SetAttrMap(Attrs());
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/psroi_pool_op.h" #include "paddle/fluid/operators/psroi_pool_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -154,12 +155,29 @@ class PSROIPoolGradOp : public framework::OperatorWithKernel { ...@@ -154,12 +155,29 @@ class PSROIPoolGradOp : public framework::OperatorWithKernel {
} }
}; };
class PSROIPoolGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("psroi_pool_grad");
op->SetInput("X", Input("X"));
op->SetInput("ROIs", Input("ROIs"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(psroi_pool, ops::PSROIPoolOp, ops::PSROIPoolOpMaker, REGISTER_OPERATOR(psroi_pool, ops::PSROIPoolOp, ops::PSROIPoolOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::PSROIPoolGradDescMaker);
REGISTER_OPERATOR(psroi_pool_grad, ops::PSROIPoolGradOp); REGISTER_OPERATOR(psroi_pool_grad, ops::PSROIPoolGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
psroi_pool, psroi_pool,
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/rank_loss_op.h" #include "paddle/fluid/operators/rank_loss_op.h"
#include <memory>
#include <string> #include <string>
namespace paddle { namespace paddle {
...@@ -116,6 +117,25 @@ class RankLossGradOp : public framework::OperatorWithKernel { ...@@ -116,6 +117,25 @@ class RankLossGradOp : public framework::OperatorWithKernel {
} }
}; };
class RankLossGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("rank_loss_grad");
op->SetInput("Label", Input("Label"));
op->SetInput("Left", Input("Left"));
op->SetInput("Right", Input("Right"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("Left"), InputGrad("Left"));
op->SetOutput(framework::GradVarName("Right"), InputGrad("Right"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
......
...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h" #include "paddle/fluid/operators/roi_align_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -147,12 +148,29 @@ Thus avoid the misaligned problem. ...@@ -147,12 +148,29 @@ Thus avoid the misaligned problem.
} }
}; };
class ROIAlignGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("roi_align_grad");
op->SetInput("X", Input("X"));
op->SetInput("ROIs", Input("ROIs"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(roi_align, ops::ROIAlignOp, ops::ROIAlignOpMaker, REGISTER_OPERATOR(roi_align, ops::ROIAlignOp, ops::ROIAlignOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::ROIAlignGradDescMaker);
REGISTER_OPERATOR(roi_align_grad, ops::ROIAlignGradOp); REGISTER_OPERATOR(roi_align_grad, ops::ROIAlignGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
roi_align, roi_align,
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/roi_pool_op.h" #include "paddle/fluid/operators/roi_pool_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -158,12 +159,30 @@ https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn ...@@ -158,12 +159,30 @@ https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
} }
}; };
class ROIPoolGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("roi_pool_grad");
op->SetInput("X", Input("X"));
op->SetInput("ROIs", Input("ROIs"));
op->SetInput("Argmax", Output("Argmax"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker, REGISTER_OPERATOR(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::ROIPoolGradDescMaker);
REGISTER_OPERATOR(roi_pool_grad, ops::ROIPoolGradOp); REGISTER_OPERATOR(roi_pool_grad, ops::ROIPoolGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
roi_pool, roi_pool,
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/scatter_op.h" #include "paddle/fluid/operators/scatter_op.h"
#include <memory>
#include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/ddim.h"
namespace paddle { namespace paddle {
...@@ -63,14 +64,16 @@ class ScatterGradOp : public framework::OperatorWithKernel { ...@@ -63,14 +64,16 @@ class ScatterGradOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim(framework::GradVarName("Updates"), ctx->SetOutputDim(framework::GradVarName("Updates"),
ctx->GetInputDim("Updates")); ctx->GetInputDim("Updates"));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); ctx->SetOutputDim(framework::GradVarName("X"),
ctx->GetInputDim(framework::GradVarName("Out")));
} }
protected: protected:
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), return framework::OpKernelType(
ctx.device_context()); ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
ctx.device_context());
} }
}; };
...@@ -95,12 +98,34 @@ $$ ...@@ -95,12 +98,34 @@ $$
} }
}; };
class ScatterGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("scatter_grad");
op->SetInput("Ids", Input("Ids"));
op->SetInput("Updates", Input("Updates"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetOutput(framework::GradVarName("Updates"), InputGrad("Updates"));
op->SetAttrMap(Attrs());
return op;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ScatterGradNoNeedBufferVarsInference,
"Updates");
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(scatter, ops::ScatterOp, ops::ScatterOpMaker, REGISTER_OPERATOR(scatter, ops::ScatterOp, ops::ScatterOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::ScatterGradDescMaker);
REGISTER_OPERATOR(scatter_grad, ops::ScatterGradOp); REGISTER_OPERATOR(scatter_grad, ops::ScatterGradOp,
ops::ScatterGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(scatter, ops::ScatterOpKernel<float>); REGISTER_OP_CPU_KERNEL(scatter, ops::ScatterOpKernel<float>);
REGISTER_OP_CPU_KERNEL(scatter_grad, ops::ScatterGradientOpKernel<float>); REGISTER_OP_CPU_KERNEL(scatter_grad, ops::ScatterGradientOpKernel<float>);
...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/shuffle_channel_op.h" #include "paddle/fluid/operators/shuffle_channel_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -91,13 +92,28 @@ class ShuffleChannelGradOp : public framework::OperatorWithKernel { ...@@ -91,13 +92,28 @@ class ShuffleChannelGradOp : public framework::OperatorWithKernel {
} }
}; };
class ShuffleChannelGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("shuffle_channel_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp, REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
ops::ShuffleChannelOpMaker, ops::ShuffleChannelOpMaker, ops::ShuffleChannelGradDescMaker);
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp); REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册