@@ -142,6 +142,7 @@ We also project the encoder vector to :code:`decoder_size` dimensional space, ge
The decoder uses :code:`recurrent_group` to define the recurrent neural network. The step and output functions are defined in :code:`gru_decoder_with_attention`:
<p>The decoder uses <codeclass="code docutils literal"><spanclass="pre">recurrent_group</span></code> to define the recurrent neural network. The step and output functions are defined in <codeclass="code docutils literal"><spanclass="pre">gru_decoder_with_attention</span></code>:</p>
<p>The implementation of the step function is listed as below. First, it defines the <strong>memory</strong> of the decoder network. Then it defines attention, gated recurrent unit step function, and the output function:</p>
<trclass="field-odd field"><thclass="field-name">Parameters:</th><tdclass="field-body"><strong>sparse</strong> (<em>bool</em>) – with sparse support or not.</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<divclass="section"id="adamoptimizer">
<h1>AdamOptimizer<aclass="headerlink"href="#adamoptimizer"title="Permalink to this headline">¶</a></h1>
...
...
@@ -289,6 +315,7 @@ clipped.</li>
<h3><ahref="../../../index.html">Table Of Contents</a></h3>