未验证 提交 3ebd5af8 编写于 作者: C cyberslack_lee 提交者: GitHub

support auto generate for bce_loss (#52231)

* bce_loss

* fix error

* fix

* fix

* fix

* reslove confilict
上级 cf361716
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/binary.h"
namespace paddle {
namespace operators {
class BCELossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context().GetPlace());
}
};
class BCELossGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BCELossGrad");
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BCELossGrad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
"Input",
framework::GradVarName("Out"),
"BCELossGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
"Output",
framework::GradVarName("X"),
"BCELossGrad");
auto x_dims = ctx->GetInputDim("X");
auto labels_dims = ctx->GetInputDim("Label");
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
bool check = true;
if ((!ctx->IsRuntime()) &&
(phi::product(x_dims) <= 0 || phi::product(labels_dims) <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(x_dims,
labels_dims,
platform::errors::InvalidArgument(
"Input(X) and Input(Label) shall have the same "
"shape. But received: the shape of Input(X) is "
"[%s], the shape of Input(Label) is [%s].",
x_dims,
labels_dims));
PADDLE_ENFORCE_EQ(x_dims,
dout_dims,
platform::errors::InvalidArgument(
"Input(X) and Input(Out@Grad) shall have the same "
"shape. But received: the shape of Input(X) is "
"[%s], the shape of Input(Out@Grad) is [%s].",
x_dims,
dout_dims));
}
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD("X", framework::GradVarName("X"));
}
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context().GetPlace());
}
};
class BCELossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), the input is a tensor of logits"
"computed by the previous operator, which is always the result of"
"a sigmoid operator. Input must between in 0 and 1.");
AddInput("Label",
"(Tensor, default Tensor<float>), have same shape with input"
"label should between in 0 and 1.");
AddOutput("Out",
"(Tensor, default Tensor<float>), have same shape with"
"input");
AddComment(R"DOC(
BinaryCrossEntropy operator.
This measures the element-wise probability error in classification tasks
in which each class is independent.
The logitstic loss is given as follows:
$$loss = -Label * \log(X) - (1 - Label) * \log(1 - X)$$
)DOC");
}
};
template <typename T>
class BCELossGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("bce_loss_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Label", this->Input("Label"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_INPLACE_OP_INFERER(BCELossInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(BCELossGradInplaceInferer,
{framework::GradVarName("Out"),
framework::GradVarName("X")});
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(bce_loss,
BCELossInferShapeFunctor,
PD_INFER_META(phi::BCELossInferMeta));
REGISTER_OPERATOR(bce_loss,
ops::BCELossOp,
ops::BCELossOpMaker,
ops::BCELossGradOpMaker<paddle::framework::OpDesc>,
ops::BCELossGradOpMaker<paddle::imperative::OpBase>,
ops::BCELossInplaceInferer,
BCELossInferShapeFunctor);
REGISTER_OPERATOR(bce_loss_grad,
ops::BCELossGradOp,
ops::BCELossGradInplaceInferer);
...@@ -121,6 +121,17 @@ ...@@ -121,6 +121,17 @@
func : atanh_grad func : atanh_grad
inplace : (out_grad -> x_grad) inplace : (out_grad -> x_grad)
- backward_op : bce_loss_grad
forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
args : (Tensor input, Tensor label, Tensor out_grad)
output : Tensor(input_grad)
infer_meta :
func : UnchangedInferMeta
param : [input]
kernel :
func : bce_loss_grad
inplace : (out_grad -> input_grad)
- backward_op : bicubic_interp_grad - backward_op : bicubic_interp_grad
forward : bicubic_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout="NCHW", int out_d=0, int out_h=0, int out_w=0, float[] scale={}, str interp_method="bilinear", bool align_corners=true, int align_mode=1) -> Tensor(output) forward : bicubic_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout="NCHW", int out_d=0, int out_h=0, int out_w=0, float[] scale={}, str interp_method="bilinear", bool align_corners=true, int align_mode=1) -> Tensor(output)
args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
......
...@@ -134,17 +134,6 @@ ...@@ -134,17 +134,6 @@
composite: batch_norm_grad(x, scale, bias, mean_out, variance_out, saved_mean, saved_variance, reserve_space, out_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics) composite: batch_norm_grad(x, scale, bias, mean_out, variance_out, saved_mean, saved_variance, reserve_space, out_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics)
backward : batch_norm_double_grad backward : batch_norm_double_grad
- backward_op : bce_loss_grad
forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
args : (Tensor input, Tensor label, Tensor out_grad)
output : Tensor(input_grad)
infer_meta :
func : UnchangedInferMeta
param : [input]
kernel :
func : bce_loss_grad
inplace : (out_grad -> input_grad)
- backward_op : bilinear_tensor_product_grad - backward_op : bilinear_tensor_product_grad
forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out) forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad) args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad)
......
...@@ -214,15 +214,6 @@ ...@@ -214,15 +214,6 @@
view : (mean -> mean_out), (variance -> variance_out) view : (mean -> mean_out), (variance -> variance_out)
backward : batch_norm_grad backward : batch_norm_grad
- op : bce_loss
args : (Tensor input, Tensor label)
output : Tensor
infer_meta :
func : BCELossInferMeta
kernel :
func : bce_loss
backward : bce_loss_grad
- op : bilinear_tensor_product - op : bilinear_tensor_product
args : (Tensor x, Tensor y, Tensor weight, Tensor bias) args : (Tensor x, Tensor y, Tensor weight, Tensor bias)
output : Tensor output : Tensor
......
...@@ -198,6 +198,13 @@ ...@@ -198,6 +198,13 @@
extra : extra :
attrs : [bool use_mkldnn = false, bool fuse_with_relu = false] attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]
- op : bce_loss
backward : bce_loss_grad
inputs :
{input : X, label : Label}
outputs :
out : Out
- op : bernoulli - op : bernoulli
inputs : inputs :
x : X x : X
......
...@@ -143,6 +143,17 @@ ...@@ -143,6 +143,17 @@
data_type : x data_type : x
optional : ins_tag_weight optional : ins_tag_weight
- op : bce_loss
args : (Tensor input, Tensor label)
output : Tensor
infer_meta :
func : BCELossInferMeta
kernel :
func : bce_loss
data_type : input
inplace : (input -> out)
backward : bce_loss_grad
- op : bernoulli - op : bernoulli
args : (Tensor x) args : (Tensor x)
output : Tensor(out) output : Tensor(out)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature BCELossGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature(
"bce_loss_grad", {"X", "Label", "Out@GRAD"}, {}, {"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(bce_loss_grad, phi::BCELossGradOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册