Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3e088aaf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3e088aaf
编写于
11月 25, 2021
作者:
F
furnace
提交者:
GitHub
11月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add int64 support for argsort op (#37434)
* [NPU] add int64 support for argsort op * [NPU] delete debug codes
上级
1127fecb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
179 addition
and
32 deletion
+179
-32
paddle/fluid/operators/argsort_op_npu.cc
paddle/fluid/operators/argsort_op_npu.cc
+97
-32
python/paddle/fluid/tests/unittests/npu/test_argsort_op_npu.py
...n/paddle/fluid/tests/unittests/npu/test_argsort_op_npu.py
+82
-0
未找到文件。
paddle/fluid/operators/argsort_op_npu.cc
浏览文件 @
3e088aaf
...
...
@@ -46,6 +46,18 @@ static void CastToInt64(const framework::ExecutionContext& ctx,
.
Run
(
stream
);
}
static
void
CastToFP32
(
const
framework
::
ExecutionContext
&
ctx
,
const
aclrtStream
&
stream
,
const
Tensor
&
in
,
Tensor
*
out
)
{
out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
NpuOpRunner
runner
;
runner
.
SetType
(
"Cast"
)
.
AddInput
(
in
)
.
AddOutput
(
*
out
)
.
AddAttr
(
"dst_type"
,
ACL_FLOAT
)
.
Run
(
stream
);
}
template
<
typename
T
>
class
ArgsortNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -66,41 +78,91 @@ class ArgsortNPUKernel : public framework::OpKernel<T> {
Tensor
indices_tmp
(
framework
::
proto
::
VarType
::
INT32
);
indices_tmp
.
Resize
(
indices
->
dims
());
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
indices_tmp
.
mutable_data
<
int32_t
>
(
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Sort"
,
{
*
input
},
{
*
output
,
indices_tmp
},
attr
);
runner
.
Run
(
stream
);
}
else
{
std
::
vector
<
int64_t
>
perm
;
for
(
int64_t
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
perm
.
emplace_back
(
i
);
if
(
input
->
type
()
==
framework
::
proto
::
VarType
::
INT64
)
{
Tensor
input_fp32
(
framework
::
proto
::
VarType
::
FP32
);
input_fp32
.
Resize
(
input
->
dims
());
CastToFP32
(
ctx
,
stream
,
*
input
,
&
input_fp32
);
Tensor
output_fp32
(
framework
::
proto
::
VarType
::
FP32
);
output_fp32
.
Resize
(
output
->
dims
());
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
output_fp32
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
indices_tmp
.
mutable_data
<
int32_t
>
(
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Sort"
,
{
input_fp32
},
{
output_fp32
,
indices_tmp
},
attr
);
runner
.
Run
(
stream
);
CastToInt64
(
ctx
,
stream
,
output_fp32
,
output
);
}
else
{
std
::
vector
<
int64_t
>
perm
;
for
(
int64_t
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
perm
.
emplace_back
(
i
);
}
std
::
swap
(
perm
[
axis
],
perm
[
in_dims
.
size
()
-
1
]);
std
::
vector
<
int64_t
>
shape
;
for
(
size_t
i
=
0
;
i
<
perm
.
size
();
i
++
)
{
shape
.
emplace_back
(
in_dims
[
perm
[
i
]]);
}
auto
trans_dims
=
framework
::
make_ddim
(
shape
);
Tensor
trans_input
(
input_fp32
.
type
());
trans_input
.
Resize
(
trans_dims
);
TranposeNPU
<
float
>
(
ctx
,
stream
,
&
perm
,
input_fp32
,
&
trans_input
);
Tensor
trans_output
(
input_fp32
.
type
());
Tensor
trans_indices
(
framework
::
proto
::
VarType
::
INT32
);
trans_output
.
mutable_data
<
float
>
(
trans_dims
,
ctx
.
GetPlace
());
trans_indices
.
mutable_data
<
int32_t
>
(
trans_dims
,
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Sort"
,
{
trans_input
},
{
trans_output
,
trans_indices
},
attr
);
runner
.
Run
(
stream
);
TranposeNPU
<
float
>
(
ctx
,
stream
,
&
perm
,
trans_output
,
&
output_fp32
);
TranposeNPU
<
int32_t
>
(
ctx
,
stream
,
&
perm
,
trans_indices
,
&
indices_tmp
);
CastToInt64
(
ctx
,
stream
,
output_fp32
,
output
);
}
std
::
swap
(
perm
[
axis
],
perm
[
in_dims
.
size
()
-
1
]);
std
::
vector
<
int64_t
>
shape
;
for
(
size_t
i
=
0
;
i
<
perm
.
size
();
i
++
)
{
shape
.
emplace_back
(
in_dims
[
perm
[
i
]]);
}
else
{
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
indices_tmp
.
mutable_data
<
int32_t
>
(
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Sort"
,
{
*
input
},
{
*
output
,
indices_tmp
},
attr
);
runner
.
Run
(
stream
);
}
else
{
std
::
vector
<
int64_t
>
perm
;
for
(
int64_t
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
perm
.
emplace_back
(
i
);
}
std
::
swap
(
perm
[
axis
],
perm
[
in_dims
.
size
()
-
1
]);
std
::
vector
<
int64_t
>
shape
;
for
(
size_t
i
=
0
;
i
<
perm
.
size
();
i
++
)
{
shape
.
emplace_back
(
in_dims
[
perm
[
i
]]);
}
auto
trans_dims
=
framework
::
make_ddim
(
shape
);
Tensor
trans_input
(
input
->
type
());
trans_input
.
Resize
(
trans_dims
);
TranposeNPU
<
T
>
(
ctx
,
stream
,
&
perm
,
*
input
,
&
trans_input
);
Tensor
trans_output
(
input
->
type
());
Tensor
trans_indices
(
framework
::
proto
::
VarType
::
INT32
);
trans_output
.
mutable_data
<
T
>
(
trans_dims
,
ctx
.
GetPlace
());
trans_indices
.
mutable_data
<
int32_t
>
(
trans_dims
,
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Sort"
,
{
trans_input
},
{
trans_output
,
trans_indices
},
attr
);
runner
.
Run
(
stream
);
TranposeNPU
<
T
>
(
ctx
,
stream
,
&
perm
,
trans_output
,
output
);
TranposeNPU
<
int32_t
>
(
ctx
,
stream
,
&
perm
,
trans_indices
,
&
indices_tmp
);
}
auto
trans_dims
=
framework
::
make_ddim
(
shape
);
Tensor
trans_input
(
input
->
type
());
trans_input
.
Resize
(
trans_dims
);
TranposeNPU
<
T
>
(
ctx
,
stream
,
&
perm
,
*
input
,
&
trans_input
);
Tensor
trans_output
(
input
->
type
());
Tensor
trans_indices
(
framework
::
proto
::
VarType
::
INT32
);
trans_output
.
mutable_data
<
T
>
(
trans_dims
,
ctx
.
GetPlace
());
trans_indices
.
mutable_data
<
int32_t
>
(
trans_dims
,
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Sort"
,
{
trans_input
},
{
trans_output
,
trans_indices
},
attr
);
runner
.
Run
(
stream
);
TranposeNPU
<
T
>
(
ctx
,
stream
,
&
perm
,
trans_output
,
output
);
TranposeNPU
<
int32_t
>
(
ctx
,
stream
,
&
perm
,
trans_indices
,
&
indices_tmp
);
}
CastToInt64
(
ctx
,
stream
,
indices_tmp
,
indices
);
}
};
...
...
@@ -208,6 +270,9 @@ namespace ops = paddle::operators;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
argsort
,
ops
::
ArgsortNPUKernel
<
float
>
,
#ifdef PADDLE_WITH_ASCEND_INT64
ops
::
ArgsortNPUKernel
<
int64_t
>
,
#endif
ops
::
ArgsortNPUKernel
<
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
argsort_grad
,
ops
::
ArgsortGradNPUKernel
<
float
>
,
...
...
python/paddle/fluid/tests/unittests/npu/test_argsort_op_npu.py
浏览文件 @
3e088aaf
...
...
@@ -209,5 +209,87 @@ class TestArgsortOpDescendingAxisNeg2NPUFP32(TestArgsortOpAxisNeg2NPUFP32):
self
.
descending
=
True
# test cases for int64
class
TestArgsortOpAxis0NPUINT64
(
TestArgsortOp
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"argsort"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
init_inputshape
()
self
.
init_axis
()
self
.
init_direction
()
self
.
x
=
np
.
random
.
randint
(
low
=-
100
,
high
=
100
,
size
=
self
.
input_shape
,
dtype
=
self
.
dtype
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
"X"
:
self
.
x
}
self
.
attrs
=
{
"axis"
:
self
.
axis
,
"descending"
:
self
.
descending
}
self
.
get_output
()
self
.
outputs
=
{
"Out"
:
self
.
sorted_x
,
"Indices"
:
self
.
indices
}
def
init_axis
(
self
):
self
.
axis
=
0
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-2
)
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
class
TestArgsortOpAxis1NPUINT64
(
TestArgsortOpAxis0NPUINT64
):
def
init_axis
(
self
):
self
.
axis
=
1
class
TestArgsortOpAxis2NPUINT64
(
TestArgsortOpAxis0NPUINT64
):
def
init_axis
(
self
):
self
.
axis
=
2
class
TestArgsortOpAxisNeg1NPUINT64
(
TestArgsortOpAxis0NPUINT64
):
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestArgsortOpAxisNeg2NPUINT64
(
TestArgsortOpAxis0NPUINT64
):
def
init_axis
(
self
):
self
.
axis
=
-
2
class
TestArgsortOpDescendingAxisNPUINT64
(
TestArgsortOpAxis0NPUINT64
):
def
init_direction
(
self
):
self
.
descending
=
True
class
TestArgsortOpDescendingAxis0NPUINT64
(
TestArgsortOpAxis0NPUINT64
):
def
init_direction
(
self
):
self
.
descending
=
True
class
TestArgsortOpDescendingAxis1NPUINT64
(
TestArgsortOpAxis1NPUINT64
):
def
init_direction
(
self
):
self
.
descending
=
True
class
TestArgsortOpDescendingAxis2NPUINT64
(
TestArgsortOpAxis2NPUINT64
):
def
init_direction
(
self
):
self
.
descending
=
True
class
TestArgsortOpDescendingAxisNeg1NPUINT64
(
TestArgsortOpAxisNeg1NPUINT64
):
def
init_direction
(
self
):
self
.
descending
=
True
class
TestArgsortOpDescendingAxisNeg2NPUINT64
(
TestArgsortOpAxisNeg2NPUINT64
):
def
init_direction
(
self
):
self
.
descending
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录