Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3cdb419b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3cdb419b
编写于
2月 09, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add doc for prior box
上级
19749d52
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
137 addition
and
21 deletion
+137
-21
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+137
-21
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
3cdb419b
...
...
@@ -22,7 +22,6 @@ from ..param_attr import ParamAttr
from
layer_function_generator
import
autodoc
from
tensor
import
concat
import
math
import
numpy
as
np
from
operator
import
mul
__all__
=
[
...
...
@@ -3006,10 +3005,43 @@ def reshape_with_axis(input, axis):
"""
**ReshapeWithAxis Layer**
"""
assert
len
(
input
.
shape
)
>
axis
and
axis
>=
0
,
' '
According to the axis to merge the adjacent dim of input. Currently, the axis of
reshape_with_axis must be a scalar.
Args:
input(variable): The input tensor.
axis(list): According to the axis to merge the adjacent dim.
Returns:
Variable: A tensor variable.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape_with_axis(input=x, axis=2)
reshaped.shape
>> [-1, 1024]
reshaped = fluid.layers.reshape_with_axis(input=x, axis=[1,3])
reshaped.shape
>> [-1, 96, 32]
"""
assert
isinstance
(
axis
,
list
),
"axis should be list."
assert
len
(
input
.
shape
)
>
len
(
axis
),
"the length of axis should be litter than input.shape's."
input_shape
=
input
.
shape
new_dim
=
[
-
1
,
reduce
(
mul
,
input_shape
[
axis
:
len
(
input_shape
)],
1
)]
temp
=
0
for
ax
in
axis
:
assert
ax
<
len
(
input
.
shape
)
and
ax
>
0
,
\
'The data of Axis should be between 1 and len(input.shape)'
assert
ax
>
temp
,
'Axis should be incremented sequence'
temp
=
ax
axis
+=
[
len
(
input
.
shape
)]
new_shape
=
[]
for
i
in
range
(
len
(
axis
)
-
1
):
new_shape
+=
[
reduce
(
mul
,
input_shape
[
axis
[
i
]:
axis
[
i
+
1
]],
1
)]
new_shape
=
[
-
1
]
+
new_shape
helper
=
LayerHelper
(
'reshape'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
())
...
...
@@ -3017,14 +3049,28 @@ def reshape_with_axis(input, axis):
type
=
'reshape'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'shape'
:
new_
dim
})
attrs
=
{
'shape'
:
new_
shape
})
return
out
def
reshape
(
input
,
new_
dim
):
def
reshape
(
input
,
new_
shape
):
"""
**Reshape Layer**
Reshape the shape of input according to new_dim.
Args:
input(variable): The input tensor.
new_shape(list): The new shape of input.
Returns:
Variable: A tensor variable.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape(input=x, new_shape=[-1, 1024])
"""
helper
=
LayerHelper
(
'reshape'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
())
...
...
@@ -3051,6 +3097,44 @@ def prior_box(input,
"""
**Prior_box**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
Args:
input(variable): The input feature data of PriorBox, the layout is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
min_sizes(list): the min sizes of generated prior boxes.
max_sizes(list): the max sizes of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
variance(list): the variances to be encoded in prior boxes.
flip(bool): Whether to flip aspect ratios.
clip(bool): Whether to clip out-of-boundary boxes.
step_w(list): Prior boxes step across width, 0 for auto calculation.
step_h(list): Prior boxes step across height, 0 for auto calculation.
offset(float): Prior boxes center offset.
name(str): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position.
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position.
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
conv2d = fluid.layers.conv2d(
input=data, num_filters=2, filter_size=3)
box, var = fluid.layers.prior_box(conv2d, data,
min_size, max_size, aspect_ratio,
variance, flip, clip,
step_w, step_h, offset)
"""
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -3093,19 +3177,51 @@ def prior_boxes(input_layers,
name
=
None
):
"""
**Prior_boxes**
e.g.
prior_boxes(
input_layers = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio = 0.2,
max_ratio = 0.9,
steps = [8., 16., 32., 64., 100., 300.],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
min_dim = 300,
offset = 0.5,
variance = [0.1],
flip=True,
clip=True)
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
Args:
input(list): The list of input variables, the format of all variables is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
min_ratio(list): the min sizes of generated prior boxes.
max_ratio(list): the max sizes of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
min_dim(int):
step_w(list): Prior boxes step across width, 0 for auto calculation.
step_h(list): Prior boxes step across height, 0 for auto calculation.
offset(float): Prior boxes center offset.
variance(list): the variances to be encoded in prior boxes.
flip(bool): Whether to flip aspect ratios.
clip(bool): Whether to clip out-of-boundary boxes.
name(str): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of input_layers.
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of input_layers
Examples:
.. code-block:: python
prior_boxes(
input_layers = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio = 0.2,
max_ratio = 0.9,
steps = [8., 16., 32., 64., 100., 300.],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
min_dim = 300,
offset = 0.5,
variance = [0.1,0.1,0.1,0.1],
flip=True,
clip=True)
"""
assert
isinstance
(
input_layers
,
list
),
'input_layer should be a list.'
num_layer
=
len
(
input_layers
)
...
...
@@ -3168,8 +3284,8 @@ def prior_boxes(input_layers,
reshaped_boxes
=
[]
reshaped_vars
=
[]
for
i
in
range
(
len
(
box_results
)):
reshaped_boxes
+=
[
reshape_with_axis
(
box_results
[
i
],
axis
=
axis
)]
reshaped_vars
+=
[
reshape_with_axis
(
var_results
[
i
],
axis
=
axis
)]
reshaped_boxes
+=
[
reshape_with_axis
(
box_results
[
i
],
axis
=
[
axis
]
)]
reshaped_vars
+=
[
reshape_with_axis
(
var_results
[
i
],
axis
=
[
axis
]
)]
helper
=
LayerHelper
(
"concat"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录