Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3ca713ee
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3ca713ee
编写于
7月 11, 2022
作者:
H
houj04
提交者:
GitHub
7月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rmsprop for xpu. test=kunlun (#44175)
* rmsprop for xpu. test=kunlun * minor fix (follow comments). test=kunlun
上级
9a3054c6
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
313 addition
and
443 deletion
+313
-443
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+2
-2
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
+145
-141
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+1
-0
python/paddle/fluid/tests/unittests/white_list/no_check_set_white_list.py
...uid/tests/unittests/white_list/no_check_set_white_list.py
+1
-0
python/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
+164
-300
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
3ca713ee
...
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022070
6
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022070
7
"
)
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
@@ -19,7 +19,7 @@ endif()
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
set
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022070
6
"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022070
7
"
)
else
()
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
endif
()
...
...
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
浏览文件 @
3ca713ee
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <gflags/gflags.h>
#include <iostream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace
paddle
{
namespace
operators
{
static
inline
float
GetAttrFromTensor
(
const
framework
::
Tensor
*
tensor
)
{
const
float
*
tensor_data
=
tensor
->
data
<
float
>
();
framework
::
Tensor
cpu_tensor
;
if
(
platform
::
is_gpu_place
(
tensor
->
place
())
||
platform
::
is_xpu_place
(
tensor
->
place
()))
{
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
tensor_data
=
cpu_tensor
.
data
<
float
>
();
}
return
tensor_data
[
0
];
}
using
framework
::
OpKernelType
;
using
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
RmspropOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
paddle
::
framework
::
LoDTensor
;
// check Param & Grad tensor type
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
())));
// inputs
auto
&
param
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Input"
,
"Param"
,
"Rmsprop"
);
auto
&
meanSquare
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"MeanSquare"
),
"Input"
,
"MeanSquare"
,
"Rmsprop"
);
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Rmsprop"
);
auto
&
mom
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment"
),
"Input"
,
"Moment"
,
"Rmsprop"
);
auto
*
learning_rate
=
ctx
.
Input
<
Tensor
>
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
learning_rate
->
dims
().
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"learining rate should have dimension = 1."
" But received learning rate dim [%s] "
,
learning_rate
->
dims
().
size
()));
T
lr
=
static_cast
<
T
>
(
GetAttrFromTensor
(
learning_rate
));
// constants
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
decay
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"decay"
));
T
momentum
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
// outputs
auto
&
param_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Rmsprop"
);
auto
&
mom_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MomentOut"
),
"Output"
,
"MomentOut"
,
"Rmsprop"
);
auto
&
mom_sqrt_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MeanSquareOut"
),
"Output"
,
"MeanSquareOut"
,
"Rmsprop"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
///// rmsprop优化算法
///
/// ms_out[i] = rho * ms[i] + (1 - rho) * (g[i] * g[i]);
///
/// mom_out[i] = momentum * mom[i] + lr *
/// (g[i] / ((float)sqrt(ms_out[i] + epsilon)));
///
/// p_out[i] = p[i] - mom_out[i];
/// DLL_EXPORT int rmsprop(Context* ctx, const float* p,
/// const float* ms, const float* g, const float* mom,
/// float epsilon, float rho, float momentum, float lr,
/// float *ms_out, float *mom_out, float *p_out, int n)
int
r
=
xpu
::
rmsprop
(
dev_ctx
.
x_context
(),
grad
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
meanSquare
.
template
data
<
T
>(),
mom
.
template
data
<
T
>(),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom_sqrt_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
epsilon
,
decay
,
momentum
,
lr
,
param
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"rmsprop"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
rmsprop
,
ops
::
RmspropOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <gflags/gflags.h>
#include <iostream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace
paddle
{
namespace
operators
{
static
inline
float
GetAttrFromTensor
(
const
framework
::
Tensor
*
tensor
)
{
const
float
*
tensor_data
=
tensor
->
data
<
float
>
();
framework
::
Tensor
cpu_tensor
;
if
(
platform
::
is_gpu_place
(
tensor
->
place
())
||
platform
::
is_xpu_place
(
tensor
->
place
()))
{
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
tensor_data
=
cpu_tensor
.
data
<
float
>
();
}
return
tensor_data
[
0
];
}
using
framework
::
OpKernelType
;
using
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
RmspropOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
paddle
::
framework
::
LoDTensor
;
// check Param & Grad tensor type
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
())));
// inputs
auto
&
param
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Input"
,
"Param"
,
"Rmsprop"
);
auto
&
meanSquare
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"MeanSquare"
),
"Input"
,
"MeanSquare"
,
"Rmsprop"
);
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Rmsprop"
);
auto
&
mom
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment"
),
"Input"
,
"Moment"
,
"Rmsprop"
);
auto
*
learning_rate
=
ctx
.
Input
<
Tensor
>
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
learning_rate
->
dims
().
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"learining rate should have dimension = 1."
" But received learning rate dim [%s] "
,
learning_rate
->
dims
().
size
()));
T
lr
=
static_cast
<
T
>
(
GetAttrFromTensor
(
learning_rate
));
// constants
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
decay
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"decay"
));
T
momentum
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
bool
centered
=
ctx
.
Attr
<
bool
>
(
"centered"
);
PADDLE_ENFORCE_EQ
(
centered
,
false
,
platform
::
errors
::
Unimplemented
(
"centered=True is not supported in the xpu kernel of "
"rmsprop. use XPU_BLACK_LIST to disable this op."
));
/*
TODO(houj04): when XDNN api supports 'center', add input of
mean_grad_input and output of mean_grad_output. auto *mean_grad_input =
ctx.Input<Tensor>("MeanGrad"); auto *mean_grad_output =
ctx.Output<Tensor>("MeanGradOut");
*/
// outputs
auto
&
param_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Rmsprop"
);
auto
&
mom_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MomentOut"
),
"Output"
,
"MomentOut"
,
"Rmsprop"
);
auto
&
mom_sqrt_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MeanSquareOut"
),
"Output"
,
"MeanSquareOut"
,
"Rmsprop"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
// int rmsprop(Context* ctx, const T* g, const T* p, const float* ms, const
// float* mom, T* p_out, float* ms_out, float* mom_out, float epsilon, float
// rho, float momentum, float lr, int n);
int
r
=
xpu
::
rmsprop
(
dev_ctx
.
x_context
(),
grad
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
meanSquare
.
template
data
<
T
>(),
mom
.
template
data
<
T
>(),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom_sqrt_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
epsilon
,
decay
,
momentum
,
lr
,
param
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"rmsprop"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
rmsprop
,
ops
::
RmspropOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
3ca713ee
...
...
@@ -363,6 +363,7 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
BOOL
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rmsprop"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"roi_align"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/white_list/no_check_set_white_list.py
浏览文件 @
3ca713ee
...
...
@@ -36,4 +36,5 @@ no_check_set_white_list = [
'eigvalsh'
,
'class_center_sample'
,
'einsum'
,
'rmsprop'
,
]
python/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
浏览文件 @
3ca713ee
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
import
paddle
'''
def create_selected_rows_and_tensor(scope, place, height, row_num,
embedding_size):
sr = scope.var("@selected_rows@").get_selected_rows()
tensor = scope.var("grad").get_tensor()
rows = np.random.random_integers(
low=0, high=height - 1, size=[row_num, ]).astype('int64')
sr_val = np.random.random(size=[row_num, embedding_size]).astype('float32')
sr.set_height(height)
sr.set_rows(rows)
sr.get_tensor().set(sr_val, place)
tensor_val = np.zeros(shape=[height, embedding_size], dtype='float32')
for i in range(row_num):
row = rows[i]
tensor_val[row, :] = tensor_val[row, :] + sr_val[i, :]
tensor.set(tensor_val, place)
return tensor_val, sr_val
'''
"""
class TestBase(XPUOpTest):
op_type = 'rmsprop'
def setup(self,
place,
is_sparse,
centered,
size,
row_num=None,
epsilon=1e-6):
np.random.seed(5) # fix seed
self.scope = fluid.global_scope()
self.place = place
self.param_name = 'param'
self.param = np.random.random(size).astype('float32')
self.mean_square_name = 'mean_square'
self.mean_square = np.random.uniform(
low=1, high=2, size=size).astype('float32')
self.mean_grad_name = 'mean_grad'
self.mean_grad = np.random.random(size).astype('float32')
self.lr_name = 'lr'
self.learning_rate = np.array([0.01]).astype('float32')
self.grad_name = 'grad'
self.is_sparse = is_sparse
self.grad = np.random.random(size).astype('float32')
grad_tensor = self.scope.var(self.grad_name).get_tensor()
grad_tensor.set(self.grad, place)
self.moment_name = 'moment'
self.moment = np.random.uniform(
low=0, high=1, size=size).astype('float32')
self.epsilon = epsilon
self.decay = 0.9
self.momentum = 0.1
self.centered = centered
self.ms_out = self.decay * self.mean_square + (1 - self.decay
) * self.grad * self.grad
if centered:
self.mg_out = self.decay * self.mean_grad + (1 - self.decay
) * self.grad
self.moment_out = self.momentum * self.moment + \
self.learning_rate * self.grad / np.sqrt(self.ms_out - np.square(self.mg_out) + self.epsilon)
else:
self.moment_out = self.momentum * self.moment + \
self.learning_rate * self.grad / np.sqrt(self.ms_out + self.epsilon)
self.param_out = self.param - self.moment_out
# create and initialize Param Variable
self.param_tensor = self.scope.var(self.param_name).get_tensor()
self.param_tensor.set(self.param, place)
self.mean_square_tensor = self.scope.var(
self.mean_square_name).get_tensor()
self.mean_square_tensor.set(self.mean_square, place)
lr = self.scope.var(self.lr_name).get_tensor()
lr.set(self.learning_rate, place)
self.moment_tensor = self.scope.var(self.moment_name).get_tensor()
self.moment_tensor.set(self.moment, place)
if self.centered:
self.mean_grad_tensor = self.scope.var(
self.mean_grad_name).get_tensor()
self.mean_grad_tensor.set(self.mean_grad, place)
def check(self, actual_t, expect_t, place, out_name, atol=1e-5):
self.assertTrue(
np.allclose(
actual_t, expect_t, atol=atol),
'Output (' + out_name + ') has diff at ' + str(place) + '
\n
Expect '
+ str(expect_t) + '
\n
' + 'But Got' + str(actual_t))
class TestRmspropOp(TestBase):
def check_with_place(self,
place,
is_sparse,
centered,
size,
row_num=None,
epsilon=1e-6):
self.setup(place, is_sparse, centered, size, row_num, epsilon)
self.run_and_check()
def run_and_check(self):
#grad_name = self.grad_sr_name if self.is_sparse else self.grad_name
grad_name = self.grad_name
kwargs = {
'Param': self.param_name,
'Grad': grad_name,
'MeanSquare': self.mean_square_name,
'Moment': self.moment_name,
'LearningRate': self.lr_name,
'ParamOut': self.param_name,
'MeanSquareOut': self.mean_square_name,
'MomentOut': self.moment_name,
'epsilon': self.epsilon,
'decay': self.decay,
'momentum': self.momentum,
'centered': self.centered
}
if self.centered:
kwargs['MeanGrad'] = self.mean_grad_name
kwargs['MeanGradOut'] = self.mean_grad_name
rmsprop_op = Operator('rmsprop', **kwargs)
atol = 1e-6
rmsprop_op.run(self.scope, self.place)
self.check(
np.array(self.mean_square_tensor),
self.ms_out,
self.place,
self.mean_square_name,
atol=atol)
self.check(
np.array(self.moment_tensor),
self.moment_out,
self.place,
self.moment_name,
atol=atol)
self.check(
np.array(self.param_tensor),
self.param_out,
self.place,
self.param_name,
atol=atol)
if self.centered:
self.check(
np.array(self.mean_grad_tensor), self.mg_out, self.place,
self.mean_grad_name)
def test_rmsprop(self):
places = [paddle.XPUPlace(0)]
size = (128, 320)
for place in places:
for centered in [False]:
with fluid.scope_guard(core.Scope()):
self.check_with_place(
place, is_sparse=False, centered=centered, size=size)
with fluid.scope_guard(core.Scope()):
self.check_with_place(
place,
is_sparse=True,
centered=centered,
row_num=512,
size=size)
with fluid.scope_guard(core.Scope()):
self.check_with_place(
place,
is_sparse=True,
centered=centered,
row_num=60,
size=size, )
class TestRMSPropV2(XPUOpTest):
op_type = 'rmsprop'
def test_rmsprop_dygraph(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype('float32')
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
# This can be any optimizer supported by dygraph.
adam = paddle.optimizer.RMSProp(
learning_rate=0.01,
parameters=linear.parameters(),
weight_decay=0.01)
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()
def test_rmsprop(self):
place = paddle.XPUPlace(0)
paddle.enable_static()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost)
print(avg_cost.shape)
linear = paddle.nn.Linear(13, 5)
rms_optimizer = paddle.optimizer.RMSProp(
learning_rate=0.1, parameters=linear.parameters())
rms_optimizer.minimize(avg_cost)
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
def test_raise_error(self):
self.assertRaises(ValueError, paddle.optimizer.RMSProp, None)
self.assertRaises(
ValueError, paddle.optimizer.RMSProp, learning_rate=0.1, rho=None)
self.assertRaises(
ValueError,
paddle.optimizer.RMSProp,
learning_rate=0.1,
epsilon=None)
self.assertRaises(
ValueError,
paddle.optimizer.RMSProp,
learning_rate=0.1,
momentum=None)
def test_rmsprop_op_invalid_input(self):
paddle.disable_static()
linear = paddle.nn.Linear(10, 10)
with self.assertRaises(ValueError):
adam = paddle.optimizer.RMSProp(
0.1, epsilon=-1, parameters=linear.parameters())
with self.assertRaises(ValueError):
adam = paddle.optimizer.RMSProp(
0.1, momentum=-1, parameters=linear.parameters())
with self.assertRaises(ValueError):
adam = paddle.optimizer.RMSProp(
0.1, rho=-1, parameters=linear.parameters())
"""
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
def
calculate_rmsprop_by_numpy
(
param
,
grad
,
mean_square
,
moment
,
learning_rate
,
epsilon
,
decay
,
momentum
):
mean_square_out
=
decay
*
mean_square
+
(
1
-
decay
)
*
grad
*
grad
moment_out
=
momentum
*
moment
+
learning_rate
*
grad
/
np
.
sqrt
(
mean_square_out
+
epsilon
)
param_out
=
param
-
moment_out
return
param_out
,
mean_square_out
,
moment_out
class
XPUTestRMSPropOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'rmsprop'
self
.
use_dynamic_create_class
=
False
class
TestRMSPropOPBase
(
XPUOpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
xpu_version
=
core
.
get_xpu_device_version
(
0
)
self
.
init_dtype
()
self
.
set_case
()
def
set_case
(
self
):
self
.
op_type
=
'rmsprop'
self
.
dtype
=
self
.
in_type
self
.
init_config
()
self
.
param
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
input_shape
).
astype
(
self
.
dtype
)
self
.
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
input_shape
).
astype
(
self
.
dtype
)
self
.
mean_square
=
np
.
random
.
uniform
(
0
,
1
,
self
.
input_shape
).
astype
(
self
.
dtype
)
self
.
moment
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
input_shape
).
astype
(
self
.
dtype
)
self
.
mean_grad
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
input_shape
).
astype
(
self
.
dtype
)
self
.
mean_grad_out
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
input_shape
).
astype
(
self
.
dtype
)
param_out
,
mean_square_out
,
moment_out
=
calculate_rmsprop_by_numpy
(
param
=
self
.
param
,
grad
=
self
.
grad
,
mean_square
=
self
.
mean_square
,
moment
=
self
.
moment
,
learning_rate
=
self
.
learning_rate
,
epsilon
=
self
.
epsilon
,
decay
=
self
.
decay
,
momentum
=
self
.
momentum
)
self
.
inputs
=
{
'Param'
:
self
.
param
,
'Grad'
:
self
.
grad
,
'MeanSquare'
:
self
.
mean_square
,
'Moment'
:
self
.
moment
,
'LearningRate'
:
self
.
learning_rate
,
'MeanGrad'
:
self
.
mean_grad
,
'MeanGradOut'
:
self
.
mean_grad_out
,
}
self
.
attrs
=
{
'use_xpu'
:
True
,
'epsilon'
:
self
.
epsilon
,
'decay'
:
self
.
decay
,
'momentum'
:
self
.
momentum
,
'centered'
:
False
,
# TODO(houj04): when XDNN api supports 'center = True', add more test cases
}
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
,
'MeanSquareOut'
:
mean_square_out
,
'MeanGradOut'
:
self
.
mean_grad_out
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
no_check_set
=
[
'MeanGradOut'
])
def
init_config
(
self
):
self
.
input_shape
=
[
864
]
self
.
learning_rate
=
np
.
array
([
0.001
]).
astype
(
self
.
dtype
)
self
.
epsilon
=
1e-4
self
.
decay
=
0.9
self
.
momentum
=
0.1
class
XPUTestRMSProp1
(
TestRMSPropOPBase
):
def
init_config
(
self
):
self
.
input_shape
=
[
2
,
768
]
self
.
learning_rate
=
np
.
array
([
0.002
]).
astype
(
self
.
dtype
)
self
.
epsilon
=
1e-4
self
.
decay
=
0.9
self
.
momentum
=
0.1
class
XPUTestRMSProp2
(
TestRMSPropOPBase
):
def
init_config
(
self
):
self
.
input_shape
=
[
3
,
8
,
4096
]
self
.
learning_rate
=
np
.
array
([
0.005
]).
astype
(
self
.
dtype
)
self
.
epsilon
=
1e-6
self
.
decay
=
0.95
self
.
momentum
=
0
class
XPUTestRMSProp3
(
TestRMSPropOPBase
):
def
init_config
(
self
):
self
.
input_shape
=
[
1024
]
self
.
learning_rate
=
np
.
array
([
0.01
]).
astype
(
self
.
dtype
)
self
.
epsilon
=
1e-5
self
.
decay
=
0.99
self
.
momentum
=
0.02
class
XPUTestRMSProp4
(
TestRMSPropOPBase
):
def
init_config
(
self
):
self
.
input_shape
=
[
2
,
2
,
255
]
self
.
learning_rate
=
np
.
array
([
0.0005
]).
astype
(
self
.
dtype
)
self
.
epsilon
=
1e-3
self
.
decay
=
0.8
self
.
momentum
=
0.002
support_types
=
get_xpu_op_support_types
(
'rmsprop'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestRMSPropOP
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录