Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3c334bd7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3c334bd7
编写于
7月 20, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
bug fix
上级
1dd14a70
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
52 addition
and
49 deletion
+52
-49
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+52
-49
未找到文件。
python/paddle/fluid/trainer.py
浏览文件 @
3c334bd7
...
...
@@ -73,7 +73,7 @@ class BeginStepEvent(object):
self
.
step
=
step_id
self
.
fetch_metrics
=
True
"""
If fetch_metrics is true, the metrics will be fetched at the
If fetch_metrics is true, the metrics will be fetched at the
EndStepEvent. Default is True.
"""
...
...
@@ -560,6 +560,9 @@ class Trainer(object):
if
epoch_id
%
self
.
checkpoint_cfg
.
epoch_interval
==
0
\
and
step_id
%
self
.
checkpoint_cfg
.
step_interval
==
0
:
print
(
"_save_checkpoint ..."
)
exe
=
executor
.
Executor
(
self
.
place
)
save_checkpoint
(
executor
=
exe
,
...
...
@@ -604,7 +607,7 @@ class Trainer(object):
self
.
checkpoint_cfg
.
epoch_id
=
int
(
trainer_args_ret
[
0
])
self
.
checkpoint_cfg
.
step_id
=
int
(
trainer_args_ret
[
1
])
# Pserver Load
# Pserver Load
else
:
# load slice_vars
if
self
.
slice_vars
!=
None
and
len
(
self
.
slice_vars
)
!=
0
:
...
...
@@ -661,22 +664,22 @@ CHECKPOINT_SEPARATOR = "_"
def
save_checkpoint
(
executor
,
checkpoint_dir
,
trainer_id
,
main_program
,
trainer_args
=
None
,
max_num_checkpoints
=
3
,
main_program
=
None
,
trainer_id
=
0
,
save_trainer_args
=
None
,
save_lookup_table
=
None
,
pserver_endpoints
=
None
):
pserver_endpoints
=
None
,
max_num_checkpoints
=
3
):
"""
This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir`
main_program and then saves these variables to the `checkpoint_dir`
directory.
In the training precess, we generally save a checkpoint in each
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
the `max_num_checkpoints`, oldest ones will be scroll deleted.
A variable is a checkpoint variable and will be saved if it meets
...
...
@@ -688,21 +691,21 @@ def save_checkpoint(executor,
Args:
executor(Executor): The executor to run for save checkpoint.
checkpoint_dir(str): The folder where to save checkpoints.
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
is chief.
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'.
Defaut: None
main_program(Program): The program whose checkpoint variables will
be saved.
max_num_checkpoints(int): The max number of total number of existing
max_num_checkpoints(int): The max number of total number of existing
checkpoints.
Default: 3
save_lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
table_name
pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
distribute arguments.
Returns:
...
...
@@ -735,21 +738,18 @@ def save_checkpoint(executor,
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
trainer_args
:
assert
isinstance
(
trainer_args
,
dict
)
is_chief
=
trainer_id
==
0
_make_chekcpoint_dirs
(
checkpoint_dir
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
,
True
)
_save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
is_chief
=
trainer_id
==
0
if
save_trainer_args
is
not
None
:
_save_trainer_args
(
cur_dir
,
trainer_id
,
save_trainer_args
)
if
is_chief
:
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
_save_persistable_vars
(
executor
,
cur_dir
,
main_program
)
if
is_chief
and
save_lookup_table
and
pserver_endpoints
:
...
...
@@ -764,7 +764,7 @@ def load_checkpoint(executor,
main_program
=
None
,
role_id
=
0
,
is_trainer
=
True
,
load_models
=
Tru
e
,
load_models
=
Fals
e
,
load_trainer_args
=
None
,
load_slice_up_vars
=
None
,
load_lookup_table
=
None
):
...
...
@@ -774,8 +774,8 @@ def load_checkpoint(executor,
`checkpoint_dir` directory.
In the training precess, we generally save a checkpoint in each
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
`serial` to specify which serial of checkpoint you would like to
load.
...
...
@@ -827,6 +827,10 @@ def load_checkpoint(executor,
_load_persistable_vars
(
executor
,
checkpoint_dir
,
main_program
,
True
)
return
if
load_trainer_args
:
print
(
"checkpoint_dir: {}, role_id: {}, load_trainer_args: {}"
.
format
(
checkpoint_dir
,
role_id
,
load_trainer_args
))
trainer_args_ret
=
_load_trainer_args
(
checkpoint_dir
,
role_id
,
load_trainer_args
)
return
trainer_args_ret
...
...
@@ -842,9 +846,9 @@ def load_checkpoint(executor,
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
"""
clean the checkpoint dir, when the train exits normally,
clean the checkpoint dir, when the train exits normally,
the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
: param checkpoint_dir
: param delete_dir
...
...
@@ -954,7 +958,7 @@ def _load_slice_up_vars(executor, dirname, slice_vars):
def
_load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
The parameter server will load lookup table's local file in
selectedrows variable.
Args:
...
...
@@ -1005,7 +1009,7 @@ def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
def
_save_persistable_vars
(
executor
,
dirname
,
program
):
"""
This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of
program and then save these variables to a sub-folder '__model__' of
the given directory.
A variable is a checkpoint variable if it meets all following
...
...
@@ -1034,7 +1038,7 @@ def _save_persistable_vars(executor, dirname, program):
# In this example, `_save_persistable_vars` function
# will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder
# main program, and then saves these variables to the folder
# "./my_paddle_model/__model__".
"""
cur_dir
=
_get_model_dir
(
dirname
)
...
...
@@ -1053,7 +1057,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
The checkpoint notify message contains lookup table name,
The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table.
Args:
...
...
@@ -1061,13 +1065,13 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
dirname(str): The folder where to save checkpoints.
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Return:
None
Examples:
.. code-block:: python
...
...
@@ -1078,7 +1082,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
_save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints)
"""
cur_dir
=
_get_lookuptable_dir
(
dirname
)
...
...
@@ -1110,7 +1114,7 @@ def _save_trainer_args(dirname, trainer_id, trainer_args):
def
_load_trainer_args
(
checkpoint_dir
,
trainer_id
,
trainer_args
):
"""
trainer will load some args from it's independent directory,
trainer will load some args from it's independent directory,
such as epoch_id and step_id.
Args:
...
...
@@ -1264,8 +1268,6 @@ def _get_latest_checkpoint_serial(checkpoint_dir):
: param checkpoint_dir
"""
if
not
checkpoint_dir
:
return
-
1
def
has_success
(
checkpoint_dir
,
cur_dir
):
"""
...
...
@@ -1273,8 +1275,8 @@ def _get_latest_checkpoint_serial(checkpoint_dir):
"""
serial
=
_get_dir_serial
(
cur_dir
)
if
serial
==
-
1
or
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
if
serial
==
-
1
or
\
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
return
-
1
success_path
=
os
.
path
.
join
(
...
...
@@ -1283,10 +1285,11 @@ def _get_latest_checkpoint_serial(checkpoint_dir):
if
os
.
path
.
isfile
(
success_path
):
return
serial
if
not
os
.
path
.
isdir
(
checkpoint_dir
):
return
-
1
current_dir
=
-
1
if
not
checkpoint_dir
or
not
os
.
path
.
isdir
(
checkpoint_dir
):
return
current_dir
dirs
=
os
.
listdir
(
checkpoint_dir
)
for
cur_dir
in
dirs
:
success_num
=
has_success
(
checkpoint_dir
,
cur_dir
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录