未验证 提交 3c03ade8 编写于 作者: H huangjiyi 提交者: GitHub

move dgc kernel to phi (#56003)

上级 6565edcc
......@@ -2570,7 +2570,8 @@ Scope* OperatorWithKernel::PrepareData(
expected_kernel_key.dtype());
}
} else if (in_def != nullptr && // KernelRegisteredType is Function
in_def->backend != phi::Backend::ALL_BACKEND) {
in_def->backend != phi::Backend::ALL_BACKEND &&
kernel_type_for_var.backend() != phi::Backend::ALL_BACKEND) {
auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
if ((in_def->backend != tensor_backend &&
!(in_def->backend == phi::Backend::GPUDNN &&
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dgc_op.h"
#include <string>
#include <vector>
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dgc_op.h"
namespace ops = paddle::operators;
PD_REGISTER_STRUCT_KERNEL(dgc, GPU, ALL_LAYOUT, ops::DGCOpKernel, float) {}
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "dgc/dgc.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
namespace paddle {
namespace operators {
inline float get_period_sparcity(const std::vector<float>& sparsity,
float cur_step,
float rampup_steps) {
PADDLE_ENFORCE_GE(static_cast<int>(cur_step),
0,
platform::errors::InvalidArgument(
"DGC current step=%d, but it must >= 0, "
"please submit issue in github",
static_cast<int>(cur_step)));
size_t idx = static_cast<int>(cur_step * sparsity.size() / rampup_steps);
if (idx >= sparsity.size()) {
idx = sparsity.size() - 1;
}
PADDLE_ENFORCE_LT(
idx,
sparsity.size(),
platform::errors::OutOfRange(
"sparsity index out of bounds. idx=%d >= sparsity.size=%d",
idx,
sparsity.size()));
return sparsity[idx];
}
template <typename T, typename DeviceContext>
class DGCOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto u = ctx.Input<phi::DenseTensor>("U");
auto v = ctx.Input<phi::DenseTensor>("V");
auto g = ctx.Input<phi::DenseTensor>("Grad");
auto grad_out = ctx.Output<phi::DenseTensor>("Grad_out");
// attrs
float m = ctx.Attr<float>("m");
bool use_nesterov = ctx.Attr<bool>("use_nesterov");
auto sparsity = ctx.Attr<std::vector<float>>("sparsity");
auto rampup_begin_step = ctx.Attr<float>("rampup_begin_step");
auto rampup_step = ctx.Attr<float>("rampup_step");
// nranks
auto nranks_tensor = ctx.Input<phi::DenseTensor>("nranks");
const int nranks = static_cast<int>(*nranks_tensor->data<float>());
PADDLE_ENFORCE_GT(nranks,
1,
platform::errors::PreconditionNotMet(
"DGC is not useful when num_trainers <= 1. Please "
"use multi card or multi machine GPU"));
// regularization
auto p = ctx.Input<phi::DenseTensor>("Param");
float regular_coeff = ctx.Attr<float>("regular_coeff");
int regular_type = ctx.Attr<int>("regular_type");
auto p_e = framework::EigenVector<T>::Flatten(*p);
auto g_e = framework::EigenVector<T>::Flatten(*g);
auto grad_out_e = framework::EigenVector<T>::Flatten(*grad_out);
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto& eigen_ctx = *dev_ctx.eigen_device();
// NOTE. In paddle, loss has divided by nranks. Because dgc_op is before
// allreduce, so local regular_coeff need div nranks too. But now we
// multi grad with nranks in dgc_op, in that case regular_coeff don't
// need to /nranks, can prevent precision loss. For coeff often equal
// with 1e-4, if nranks=32, coeff/nranks will be 3.125e-6, the numerical
// accuracy of coeff/nranks will be too low.
PADDLE_ENFORCE_EQ(regular_type >= 0 && regular_type <= 2,
true,
platform::errors::InvalidArgument(
"DGC only support one of None|L1Decay|L2Decay "
"Regularization for now."));
if (regular_type == 0) {
grad_out_e.device(eigen_ctx) = (1.0 * nranks) * g_e;
} else if (regular_type == 1) {
// L1Decay. grad = grad + coeff * sign(param)
grad_out_e.device(eigen_ctx) =
(1.0 * nranks) * g_e + regular_coeff * p_e.sign();
} else if (regular_type == 2) {
// L2Decay. grad = grad + coeff * param
grad_out_e.device(eigen_ctx) = (1.0 * nranks) * g_e + regular_coeff * p_e;
}
// current step
auto current_step_tensor = ctx.Input<phi::DenseTensor>("current_step");
const float* current_step = current_step_tensor->data<float>();
if (static_cast<int>(*current_step) < static_cast<int>(rampup_begin_step)) {
VLOG(10) << "current_step:" << *current_step
<< " < rampup_begin_step:" << rampup_begin_step
<< " so does't use dgc";
return;
}
float ratio = 1 - get_period_sparcity(
sparsity,
static_cast<float>(*current_step - rampup_begin_step),
rampup_step);
PADDLE_ENFORCE_GE(
ratio,
0.0,
platform::errors::InvalidArgument("DGC sparsity ratio must >= 0"));
PADDLE_ENFORCE_LT(
ratio,
1.0,
platform::errors::InvalidArgument("DGC sparsity ratio must < 1"));
int k = static_cast<int>(g->numel() * ratio);
VLOG(10) << "m:" << m << ", use_nesterov:" << use_nesterov
<< ", rampup_begin_step:" << rampup_begin_step
<< ", rampup_step:" << rampup_step
<< ", current_step:" << *current_step << ", ratio:" << ratio
<< ", k:" << k << ", nranks:" << nranks;
auto k_out = ctx.Output<phi::DenseTensor>("k");
T* k_out_data = k_out->data<T>();
*k_out_data = k;
auto u_out = ctx.Output<phi::DenseTensor>("U_out");
auto v_out = ctx.Output<phi::DenseTensor>("V_out");
auto encode_grad_out = ctx.Output<phi::DenseTensor>("EncodeGrad");
auto gather_buff = ctx.Output<phi::DenseTensor>("GatherBuff");
// FIXME(gongwb): use cublas.
auto u_out_e = framework::EigenVector<T>::Flatten(*u_out);
auto u_e = framework::EigenVector<T>::Flatten(*u);
// calc local momentum from global momentum
// NOTE. If grad not multi nranks, need add below code.
// if (static_cast<int>(*current_step) ==
// static_cast<int>(rampup_begin_step)) {
// u_out_e.device(eigen_ctx) = (1.0 / nranks) * u_e;
// }
if (use_nesterov) {
// u = m * (u + g)
u_out_e.device(eigen_ctx) = m * (u_e + grad_out_e);
// v = u + v + g
ElementwiseComputeEx<phi::funcs::AddFunctor<T>, DeviceContext, T>(
ctx, u, v, 0, phi::funcs::AddFunctor<T>(), v_out);
ElementwiseComputeEx<phi::funcs::AddFunctor<T>, DeviceContext, T>(
ctx, g, v, 0, phi::funcs::AddFunctor<T>(), v_out);
} else {
// u = m * u + g
u_out_e.device(eigen_ctx) = m * u_e + grad_out_e;
// v = u + v
ElementwiseComputeEx<phi::funcs::AddFunctor<T>, DeviceContext, T>(
ctx, u, v, 0, phi::funcs::AddFunctor<T>(), v_out);
}
T* v_out_data = v_out->mutable_data<T>(ctx.GetPlace());
T* u_out_data = u_out->mutable_data<T>(ctx.GetPlace());
T* encode_grad_out_data = encode_grad_out->mutable_data<T>(
framework::DDim{2 * k}, ctx.GetPlace());
gather_buff->mutable_data<T>(framework::DDim{2 * k * nranks},
ctx.GetPlace());
int buf_size = paddle::communication::dgc::get_buffer_size(k);
paddle::memory::allocation::AllocationPtr tmp_ious_data;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if (platform::is_gpu_place(dev_ctx.GetPlace())) {
tmp_ious_data = memory::Alloc(
dev_ctx.GetPlace(),
buf_size,
phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
}
#endif
if (platform::is_cpu_place(dev_ctx.GetPlace())) {
tmp_ious_data = memory::Alloc(dev_ctx.GetPlace(), buf_size);
}
void* buf = reinterpret_cast<void*>(tmp_ious_data->ptr());
if (!paddle::communication::dgc::k_select(
static_cast<void*>(encode_grad_out_data),
k,
v_out_data,
static_cast<int>(v_out->numel()),
buf,
dev_ctx.stream(),
u_out_data)) {
// TODO(weihang): owner should polish this error message
PADDLE_THROW(platform::errors::InvalidArgument(
"V_out numel error, V_out numel is %d.", v_out->numel()));
}
phi::funcs::SetConstant<DeviceContext, T> tset;
tset(dev_ctx, grad_out, static_cast<T>(0));
}
};
} // namespace operators
} // namespace paddle
......@@ -92,6 +92,10 @@ if(WITH_XPU)
endif()
endif()
if(WITH_DGC)
list(APPEND PHI_DEPS dgc)
endif()
set(PHI_SRCS
${common_srcs}
${api_srcs}
......
......@@ -44,6 +44,10 @@ if(APPLE OR WIN32)
list(REMOVE_ITEM kernel_cu "fusion/gpu/fusion_group_kernel.cu")
endif()
if(NOT WITH_DGC)
list(REMOVE_ITEM kernel_cu "gpu/dgc_kernel.cu")
endif()
if(DEFINED REDUCE_INFERENCE_LIB_SIZE)
list(FILTER kernel_cu EXCLUDE REGEX ".*_grad_kernel\\.cc$")
list(FILTER kernel_cu EXCLUDE REGEX ".*_grad_kernel\\.cu$")
......
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void DGCKernel(const Context& dev_ctx,
const DenseTensor& u,
const DenseTensor& v,
const DenseTensor& grad,
const DenseTensor& param,
const DenseTensor& current_step_tensor,
const DenseTensor& nranks_tensor,
float m,
bool use_nesterov,
const std::vector<float>& sparsity,
float rampup_begin_step,
float rampup_step,
float regular_coeff,
int regular_type,
DenseTensor* u_out,
DenseTensor* v_out,
DenseTensor* encode_grad_out,
DenseTensor* grad_out,
DenseTensor* k_out,
DenseTensor* gather_buff);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/dgc_kernel.h"
#include <glog/logging.h>
#include "dgc/dgc.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/memory_utils.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace phi {
inline float get_period_sparcity(const std::vector<float>& sparsity,
float cur_step,
float rampup_steps) {
PADDLE_ENFORCE_GE(
static_cast<int>(cur_step),
0,
phi::errors::InvalidArgument("DGC current step=%d, but it must >= 0, "
"please submit issue in github",
static_cast<int>(cur_step)));
size_t idx = static_cast<int>(cur_step * sparsity.size() / rampup_steps);
if (idx >= sparsity.size()) {
idx = sparsity.size() - 1;
}
PADDLE_ENFORCE_LT(
idx,
sparsity.size(),
phi::errors::OutOfRange(
"sparsity index out of bounds. idx=%d >= sparsity.size=%d",
idx,
sparsity.size()));
return sparsity[idx];
}
template <typename T, typename Context>
void DGCKernel(const Context& dev_ctx,
const DenseTensor& u,
const DenseTensor& v,
const DenseTensor& grad,
const DenseTensor& param,
const DenseTensor& current_step_tensor,
const DenseTensor& nranks_tensor,
float m,
bool use_nesterov,
const std::vector<float>& sparsity,
float rampup_begin_step,
float rampup_step,
float regular_coeff,
int regular_type,
DenseTensor* u_out,
DenseTensor* v_out,
DenseTensor* encode_grad_out,
DenseTensor* grad_out,
DenseTensor* k_out,
DenseTensor* gather_buff) {
// nranks
const int nranks = static_cast<int>(*nranks_tensor.data<float>());
PADDLE_ENFORCE_GT(nranks,
1,
phi::errors::PreconditionNotMet(
"DGC is not useful when num_trainers <= 1. Please "
"use multi card or multi machine GPU"));
auto param_e = phi::EigenVector<T>::Flatten(param);
auto grad_e = phi::EigenVector<T>::Flatten(grad);
auto grad_out_e = phi::EigenVector<T>::Flatten(*grad_out);
auto& eigen_ctx = *dev_ctx.eigen_device();
// NOTE. In paddle, loss has divided by nranks. Because dgc_op is before
// allreduce, so local regular_coeff need div nranks too. But now we
// multi grad with nranks in dgc_op, in that case regular_coeff don't
// need to /nranks, can prevent precision loss. For coeff often equal
// with 1e-4, if nranks=32, coeff/nranks will be 3.125e-6, the numerical
// accuracy of coeff/nranks will be too low.
PADDLE_ENFORCE_EQ(regular_type >= 0 && regular_type <= 2,
true,
phi::errors::InvalidArgument(
"DGC only support one of None|L1Decay|L2Decay "
"Regularization for now."));
if (regular_type == 0) {
grad_out_e.device(eigen_ctx) = (1.0 * nranks) * grad_e;
} else if (regular_type == 1) {
// L1Decay. grad = grad + coeff * sign(param)
grad_out_e.device(eigen_ctx) =
(1.0 * nranks) * grad_e + regular_coeff * param_e.sign();
} else if (regular_type == 2) {
// L2Decay. grad = grad + coeff * param
grad_out_e.device(eigen_ctx) =
(1.0 * nranks) * grad_e + regular_coeff * param_e;
}
// current step
const float* current_step = current_step_tensor.data<float>();
if (static_cast<int>(*current_step) < static_cast<int>(rampup_begin_step)) {
VLOG(10) << "current_step:" << *current_step
<< " < rampup_begin_step:" << rampup_begin_step
<< " so does't use dgc";
return;
}
float ratio = 1 - get_period_sparcity(
sparsity,
static_cast<float>(*current_step - rampup_begin_step),
rampup_step);
PADDLE_ENFORCE_GE(
ratio, 0.0, phi::errors::InvalidArgument("DGC sparsity ratio must >= 0"));
PADDLE_ENFORCE_LT(
ratio, 1.0, phi::errors::InvalidArgument("DGC sparsity ratio must < 1"));
int k = static_cast<int>(grad.numel() * ratio);
VLOG(10) << "m:" << m << ", use_nesterov:" << use_nesterov
<< ", rampup_begin_step:" << rampup_begin_step
<< ", rampup_step:" << rampup_step
<< ", current_step:" << *current_step << ", ratio:" << ratio
<< ", k:" << k << ", nranks:" << nranks;
T* k_out_data = k_out->data<T>();
*k_out_data = k;
// FIXME(gongwb): use cublas.
auto u_out_e = phi::EigenVector<T>::Flatten(*u_out);
auto u_e = phi::EigenVector<T>::Flatten(u);
// calc local momentum from global momentum
// NOTE. If grad not multi nranks, need add below code.
// if (static_cast<int>(*current_step) ==
// static_cast<int>(rampup_begin_step)) {
// u_out_e.device(eigen_ctx) = (1.0 / nranks) * u_e;
// }
if (use_nesterov) {
// u = m * (u + grad)
u_out_e.device(eigen_ctx) = m * (u_e + grad_out_e);
// v = u + v + grad
dev_ctx.template Alloc<T>(v_out);
phi::funcs::ElementwiseCompute<phi::funcs::AddFunctor<T>, T>(
dev_ctx, u, v, phi::funcs::AddFunctor<T>(), v_out, 0);
phi::funcs::ElementwiseCompute<phi::funcs::AddFunctor<T>, T>(
dev_ctx, grad, v, phi::funcs::AddFunctor<T>(), v_out, 0);
} else {
// u = m * u + grad
u_out_e.device(eigen_ctx) = m * u_e + grad_out_e;
// v = u + v
dev_ctx.template Alloc<T>(v_out);
phi::funcs::ElementwiseCompute<phi::funcs::AddFunctor<T>, T>(
dev_ctx, u, v, phi::funcs::AddFunctor<T>(), v_out, 0);
}
T* v_out_data = dev_ctx.template Alloc<T>(v_out);
T* u_out_data = dev_ctx.template Alloc<T>(u_out);
encode_grad_out->Resize(phi::DDim{2 * k});
T* encode_grad_out_data = dev_ctx.template Alloc<T>(encode_grad_out);
gather_buff->Resize(phi::DDim{2 * k * nranks});
dev_ctx.template Alloc<T>(gather_buff);
int buf_size = paddle::communication::dgc::get_buffer_size(k);
phi::Allocator::AllocationPtr tmp_ious_data;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if (dev_ctx.GetPlace().GetType() == phi::AllocationType::GPU) {
tmp_ious_data = phi::memory_utils::Alloc(
dev_ctx.GetPlace(),
buf_size,
phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
}
#endif
if (dev_ctx.GetPlace().GetType() == phi::AllocationType::CPU) {
tmp_ious_data = phi::memory_utils::Alloc(dev_ctx.GetPlace(), buf_size);
}
void* buf = reinterpret_cast<void*>(tmp_ious_data->ptr());
if (!paddle::communication::dgc::k_select(
static_cast<void*>(encode_grad_out_data),
k,
v_out_data,
static_cast<int>(v_out->numel()),
buf,
dev_ctx.stream(),
u_out_data)) {
// TODO(weihang): owner should polish this error message
PADDLE_THROW(phi::errors::InvalidArgument(
"V_out numel error, V_out numel is %d.", v_out->numel()));
}
phi::funcs::SetConstant<Context, T> tset;
tset(dev_ctx, grad_out, static_cast<T>(0));
}
} // namespace phi
PD_REGISTER_KERNEL(dgc, GPU, ALL_LAYOUT, phi::DGCKernel, float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册