Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3c03ade8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3c03ade8
编写于
8月 08, 2023
作者:
H
huangjiyi
提交者:
GitHub
8月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move dgc kernel to phi (#56003)
上级
6565edcc
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
272 addition
and
245 deletion
+272
-245
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+2
-1
paddle/fluid/operators/dgc_op.cc
paddle/fluid/operators/dgc_op.cc
+0
-2
paddle/fluid/operators/dgc_op.cu
paddle/fluid/operators/dgc_op.cu
+0
-19
paddle/fluid/operators/dgc_op.h
paddle/fluid/operators/dgc_op.h
+0
-223
paddle/phi/CMakeLists.txt
paddle/phi/CMakeLists.txt
+4
-0
paddle/phi/kernels/CMakeLists.txt
paddle/phi/kernels/CMakeLists.txt
+4
-0
paddle/phi/kernels/dgc_kernel.h
paddle/phi/kernels/dgc_kernel.h
+43
-0
paddle/phi/kernels/gpu/dgc_kernel.cu
paddle/phi/kernels/gpu/dgc_kernel.cu
+219
-0
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
3c03ade8
...
...
@@ -2570,7 +2570,8 @@ Scope* OperatorWithKernel::PrepareData(
expected_kernel_key
.
dtype
());
}
}
else
if
(
in_def
!=
nullptr
&&
// KernelRegisteredType is Function
in_def
->
backend
!=
phi
::
Backend
::
ALL_BACKEND
)
{
in_def
->
backend
!=
phi
::
Backend
::
ALL_BACKEND
&&
kernel_type_for_var
.
backend
()
!=
phi
::
Backend
::
ALL_BACKEND
)
{
auto
tensor_backend
=
phi
::
TransToPhiBackend
(
tensor_in
->
place
());
if
((
in_def
->
backend
!=
tensor_backend
&&
!
(
in_def
->
backend
==
phi
::
Backend
::
GPUDNN
&&
...
...
paddle/fluid/operators/dgc_op.cc
浏览文件 @
3c03ade8
...
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dgc_op.h"
#include <string>
#include <vector>
...
...
paddle/fluid/operators/dgc_op.cu
已删除
100644 → 0
浏览文件 @
6565edcc
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dgc_op.h"
namespace
ops
=
paddle
::
operators
;
PD_REGISTER_STRUCT_KERNEL
(
dgc
,
GPU
,
ALL_LAYOUT
,
ops
::
DGCOpKernel
,
float
)
{}
paddle/fluid/operators/dgc_op.h
已删除
100644 → 0
浏览文件 @
6565edcc
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "dgc/dgc.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
namespace
paddle
{
namespace
operators
{
inline
float
get_period_sparcity
(
const
std
::
vector
<
float
>&
sparsity
,
float
cur_step
,
float
rampup_steps
)
{
PADDLE_ENFORCE_GE
(
static_cast
<
int
>
(
cur_step
),
0
,
platform
::
errors
::
InvalidArgument
(
"DGC current step=%d, but it must >= 0, "
"please submit issue in github"
,
static_cast
<
int
>
(
cur_step
)));
size_t
idx
=
static_cast
<
int
>
(
cur_step
*
sparsity
.
size
()
/
rampup_steps
);
if
(
idx
>=
sparsity
.
size
())
{
idx
=
sparsity
.
size
()
-
1
;
}
PADDLE_ENFORCE_LT
(
idx
,
sparsity
.
size
(),
platform
::
errors
::
OutOfRange
(
"sparsity index out of bounds. idx=%d >= sparsity.size=%d"
,
idx
,
sparsity
.
size
()));
return
sparsity
[
idx
];
}
template
<
typename
T
,
typename
DeviceContext
>
class
DGCOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
u
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"U"
);
auto
v
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"V"
);
auto
g
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Grad"
);
auto
grad_out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Grad_out"
);
// attrs
float
m
=
ctx
.
Attr
<
float
>
(
"m"
);
bool
use_nesterov
=
ctx
.
Attr
<
bool
>
(
"use_nesterov"
);
auto
sparsity
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"sparsity"
);
auto
rampup_begin_step
=
ctx
.
Attr
<
float
>
(
"rampup_begin_step"
);
auto
rampup_step
=
ctx
.
Attr
<
float
>
(
"rampup_step"
);
// nranks
auto
nranks_tensor
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"nranks"
);
const
int
nranks
=
static_cast
<
int
>
(
*
nranks_tensor
->
data
<
float
>
());
PADDLE_ENFORCE_GT
(
nranks
,
1
,
platform
::
errors
::
PreconditionNotMet
(
"DGC is not useful when num_trainers <= 1. Please "
"use multi card or multi machine GPU"
));
// regularization
auto
p
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Param"
);
float
regular_coeff
=
ctx
.
Attr
<
float
>
(
"regular_coeff"
);
int
regular_type
=
ctx
.
Attr
<
int
>
(
"regular_type"
);
auto
p_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
p
);
auto
g_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
g
);
auto
grad_out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad_out
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
eigen_ctx
=
*
dev_ctx
.
eigen_device
();
// NOTE. In paddle, loss has divided by nranks. Because dgc_op is before
// allreduce, so local regular_coeff need div nranks too. But now we
// multi grad with nranks in dgc_op, in that case regular_coeff don't
// need to /nranks, can prevent precision loss. For coeff often equal
// with 1e-4, if nranks=32, coeff/nranks will be 3.125e-6, the numerical
// accuracy of coeff/nranks will be too low.
PADDLE_ENFORCE_EQ
(
regular_type
>=
0
&&
regular_type
<=
2
,
true
,
platform
::
errors
::
InvalidArgument
(
"DGC only support one of None|L1Decay|L2Decay "
"Regularization for now."
));
if
(
regular_type
==
0
)
{
grad_out_e
.
device
(
eigen_ctx
)
=
(
1.0
*
nranks
)
*
g_e
;
}
else
if
(
regular_type
==
1
)
{
// L1Decay. grad = grad + coeff * sign(param)
grad_out_e
.
device
(
eigen_ctx
)
=
(
1.0
*
nranks
)
*
g_e
+
regular_coeff
*
p_e
.
sign
();
}
else
if
(
regular_type
==
2
)
{
// L2Decay. grad = grad + coeff * param
grad_out_e
.
device
(
eigen_ctx
)
=
(
1.0
*
nranks
)
*
g_e
+
regular_coeff
*
p_e
;
}
// current step
auto
current_step_tensor
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"current_step"
);
const
float
*
current_step
=
current_step_tensor
->
data
<
float
>
();
if
(
static_cast
<
int
>
(
*
current_step
)
<
static_cast
<
int
>
(
rampup_begin_step
))
{
VLOG
(
10
)
<<
"current_step:"
<<
*
current_step
<<
" < rampup_begin_step:"
<<
rampup_begin_step
<<
" so does't use dgc"
;
return
;
}
float
ratio
=
1
-
get_period_sparcity
(
sparsity
,
static_cast
<
float
>
(
*
current_step
-
rampup_begin_step
),
rampup_step
);
PADDLE_ENFORCE_GE
(
ratio
,
0.0
,
platform
::
errors
::
InvalidArgument
(
"DGC sparsity ratio must >= 0"
));
PADDLE_ENFORCE_LT
(
ratio
,
1.0
,
platform
::
errors
::
InvalidArgument
(
"DGC sparsity ratio must < 1"
));
int
k
=
static_cast
<
int
>
(
g
->
numel
()
*
ratio
);
VLOG
(
10
)
<<
"m:"
<<
m
<<
", use_nesterov:"
<<
use_nesterov
<<
", rampup_begin_step:"
<<
rampup_begin_step
<<
", rampup_step:"
<<
rampup_step
<<
", current_step:"
<<
*
current_step
<<
", ratio:"
<<
ratio
<<
", k:"
<<
k
<<
", nranks:"
<<
nranks
;
auto
k_out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"k"
);
T
*
k_out_data
=
k_out
->
data
<
T
>
();
*
k_out_data
=
k
;
auto
u_out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"U_out"
);
auto
v_out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"V_out"
);
auto
encode_grad_out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"EncodeGrad"
);
auto
gather_buff
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"GatherBuff"
);
// FIXME(gongwb): use cublas.
auto
u_out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
u_out
);
auto
u_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
u
);
// calc local momentum from global momentum
// NOTE. If grad not multi nranks, need add below code.
// if (static_cast<int>(*current_step) ==
// static_cast<int>(rampup_begin_step)) {
// u_out_e.device(eigen_ctx) = (1.0 / nranks) * u_e;
// }
if
(
use_nesterov
)
{
// u = m * (u + g)
u_out_e
.
device
(
eigen_ctx
)
=
m
*
(
u_e
+
grad_out_e
);
// v = u + v + g
ElementwiseComputeEx
<
phi
::
funcs
::
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
u
,
v
,
0
,
phi
::
funcs
::
AddFunctor
<
T
>
(),
v_out
);
ElementwiseComputeEx
<
phi
::
funcs
::
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
g
,
v
,
0
,
phi
::
funcs
::
AddFunctor
<
T
>
(),
v_out
);
}
else
{
// u = m * u + g
u_out_e
.
device
(
eigen_ctx
)
=
m
*
u_e
+
grad_out_e
;
// v = u + v
ElementwiseComputeEx
<
phi
::
funcs
::
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
u
,
v
,
0
,
phi
::
funcs
::
AddFunctor
<
T
>
(),
v_out
);
}
T
*
v_out_data
=
v_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
u_out_data
=
u_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
encode_grad_out_data
=
encode_grad_out
->
mutable_data
<
T
>
(
framework
::
DDim
{
2
*
k
},
ctx
.
GetPlace
());
gather_buff
->
mutable_data
<
T
>
(
framework
::
DDim
{
2
*
k
*
nranks
},
ctx
.
GetPlace
());
int
buf_size
=
paddle
::
communication
::
dgc
::
get_buffer_size
(
k
);
paddle
::
memory
::
allocation
::
AllocationPtr
tmp_ious_data
;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
is_gpu_place
(
dev_ctx
.
GetPlace
()))
{
tmp_ious_data
=
memory
::
Alloc
(
dev_ctx
.
GetPlace
(),
buf_size
,
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
dev_ctx
.
stream
())));
}
#endif
if
(
platform
::
is_cpu_place
(
dev_ctx
.
GetPlace
()))
{
tmp_ious_data
=
memory
::
Alloc
(
dev_ctx
.
GetPlace
(),
buf_size
);
}
void
*
buf
=
reinterpret_cast
<
void
*>
(
tmp_ious_data
->
ptr
());
if
(
!
paddle
::
communication
::
dgc
::
k_select
(
static_cast
<
void
*>
(
encode_grad_out_data
),
k
,
v_out_data
,
static_cast
<
int
>
(
v_out
->
numel
()),
buf
,
dev_ctx
.
stream
(),
u_out_data
))
{
// TODO(weihang): owner should polish this error message
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"V_out numel error, V_out numel is %d."
,
v_out
->
numel
()));
}
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
tset
;
tset
(
dev_ctx
,
grad_out
,
static_cast
<
T
>
(
0
));
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/CMakeLists.txt
浏览文件 @
3c03ade8
...
...
@@ -92,6 +92,10 @@ if(WITH_XPU)
endif
()
endif
()
if
(
WITH_DGC
)
list
(
APPEND PHI_DEPS dgc
)
endif
()
set
(
PHI_SRCS
${
common_srcs
}
${
api_srcs
}
...
...
paddle/phi/kernels/CMakeLists.txt
浏览文件 @
3c03ade8
...
...
@@ -44,6 +44,10 @@ if(APPLE OR WIN32)
list
(
REMOVE_ITEM kernel_cu
"fusion/gpu/fusion_group_kernel.cu"
)
endif
()
if
(
NOT WITH_DGC
)
list
(
REMOVE_ITEM kernel_cu
"gpu/dgc_kernel.cu"
)
endif
()
if
(
DEFINED REDUCE_INFERENCE_LIB_SIZE
)
list
(
FILTER kernel_cu EXCLUDE REGEX
".*_grad_kernel
\\
.cc$"
)
list
(
FILTER kernel_cu EXCLUDE REGEX
".*_grad_kernel
\\
.cu$"
)
...
...
paddle/phi/kernels/dgc_kernel.h
0 → 100644
浏览文件 @
3c03ade8
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
DGCKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
u
,
const
DenseTensor
&
v
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
param
,
const
DenseTensor
&
current_step_tensor
,
const
DenseTensor
&
nranks_tensor
,
float
m
,
bool
use_nesterov
,
const
std
::
vector
<
float
>&
sparsity
,
float
rampup_begin_step
,
float
rampup_step
,
float
regular_coeff
,
int
regular_type
,
DenseTensor
*
u_out
,
DenseTensor
*
v_out
,
DenseTensor
*
encode_grad_out
,
DenseTensor
*
grad_out
,
DenseTensor
*
k_out
,
DenseTensor
*
gather_buff
);
}
// namespace phi
paddle/phi/kernels/gpu/dgc_kernel.cu
0 → 100644
浏览文件 @
3c03ade8
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/dgc_kernel.h"
#include <glog/logging.h>
#include "dgc/dgc.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/memory_utils.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
inline
float
get_period_sparcity
(
const
std
::
vector
<
float
>&
sparsity
,
float
cur_step
,
float
rampup_steps
)
{
PADDLE_ENFORCE_GE
(
static_cast
<
int
>
(
cur_step
),
0
,
phi
::
errors
::
InvalidArgument
(
"DGC current step=%d, but it must >= 0, "
"please submit issue in github"
,
static_cast
<
int
>
(
cur_step
)));
size_t
idx
=
static_cast
<
int
>
(
cur_step
*
sparsity
.
size
()
/
rampup_steps
);
if
(
idx
>=
sparsity
.
size
())
{
idx
=
sparsity
.
size
()
-
1
;
}
PADDLE_ENFORCE_LT
(
idx
,
sparsity
.
size
(),
phi
::
errors
::
OutOfRange
(
"sparsity index out of bounds. idx=%d >= sparsity.size=%d"
,
idx
,
sparsity
.
size
()));
return
sparsity
[
idx
];
}
template
<
typename
T
,
typename
Context
>
void
DGCKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
u
,
const
DenseTensor
&
v
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
param
,
const
DenseTensor
&
current_step_tensor
,
const
DenseTensor
&
nranks_tensor
,
float
m
,
bool
use_nesterov
,
const
std
::
vector
<
float
>&
sparsity
,
float
rampup_begin_step
,
float
rampup_step
,
float
regular_coeff
,
int
regular_type
,
DenseTensor
*
u_out
,
DenseTensor
*
v_out
,
DenseTensor
*
encode_grad_out
,
DenseTensor
*
grad_out
,
DenseTensor
*
k_out
,
DenseTensor
*
gather_buff
)
{
// nranks
const
int
nranks
=
static_cast
<
int
>
(
*
nranks_tensor
.
data
<
float
>
());
PADDLE_ENFORCE_GT
(
nranks
,
1
,
phi
::
errors
::
PreconditionNotMet
(
"DGC is not useful when num_trainers <= 1. Please "
"use multi card or multi machine GPU"
));
auto
param_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
param
);
auto
grad_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
grad
);
auto
grad_out_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
grad_out
);
auto
&
eigen_ctx
=
*
dev_ctx
.
eigen_device
();
// NOTE. In paddle, loss has divided by nranks. Because dgc_op is before
// allreduce, so local regular_coeff need div nranks too. But now we
// multi grad with nranks in dgc_op, in that case regular_coeff don't
// need to /nranks, can prevent precision loss. For coeff often equal
// with 1e-4, if nranks=32, coeff/nranks will be 3.125e-6, the numerical
// accuracy of coeff/nranks will be too low.
PADDLE_ENFORCE_EQ
(
regular_type
>=
0
&&
regular_type
<=
2
,
true
,
phi
::
errors
::
InvalidArgument
(
"DGC only support one of None|L1Decay|L2Decay "
"Regularization for now."
));
if
(
regular_type
==
0
)
{
grad_out_e
.
device
(
eigen_ctx
)
=
(
1.0
*
nranks
)
*
grad_e
;
}
else
if
(
regular_type
==
1
)
{
// L1Decay. grad = grad + coeff * sign(param)
grad_out_e
.
device
(
eigen_ctx
)
=
(
1.0
*
nranks
)
*
grad_e
+
regular_coeff
*
param_e
.
sign
();
}
else
if
(
regular_type
==
2
)
{
// L2Decay. grad = grad + coeff * param
grad_out_e
.
device
(
eigen_ctx
)
=
(
1.0
*
nranks
)
*
grad_e
+
regular_coeff
*
param_e
;
}
// current step
const
float
*
current_step
=
current_step_tensor
.
data
<
float
>
();
if
(
static_cast
<
int
>
(
*
current_step
)
<
static_cast
<
int
>
(
rampup_begin_step
))
{
VLOG
(
10
)
<<
"current_step:"
<<
*
current_step
<<
" < rampup_begin_step:"
<<
rampup_begin_step
<<
" so does't use dgc"
;
return
;
}
float
ratio
=
1
-
get_period_sparcity
(
sparsity
,
static_cast
<
float
>
(
*
current_step
-
rampup_begin_step
),
rampup_step
);
PADDLE_ENFORCE_GE
(
ratio
,
0.0
,
phi
::
errors
::
InvalidArgument
(
"DGC sparsity ratio must >= 0"
));
PADDLE_ENFORCE_LT
(
ratio
,
1.0
,
phi
::
errors
::
InvalidArgument
(
"DGC sparsity ratio must < 1"
));
int
k
=
static_cast
<
int
>
(
grad
.
numel
()
*
ratio
);
VLOG
(
10
)
<<
"m:"
<<
m
<<
", use_nesterov:"
<<
use_nesterov
<<
", rampup_begin_step:"
<<
rampup_begin_step
<<
", rampup_step:"
<<
rampup_step
<<
", current_step:"
<<
*
current_step
<<
", ratio:"
<<
ratio
<<
", k:"
<<
k
<<
", nranks:"
<<
nranks
;
T
*
k_out_data
=
k_out
->
data
<
T
>
();
*
k_out_data
=
k
;
// FIXME(gongwb): use cublas.
auto
u_out_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
u_out
);
auto
u_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
u
);
// calc local momentum from global momentum
// NOTE. If grad not multi nranks, need add below code.
// if (static_cast<int>(*current_step) ==
// static_cast<int>(rampup_begin_step)) {
// u_out_e.device(eigen_ctx) = (1.0 / nranks) * u_e;
// }
if
(
use_nesterov
)
{
// u = m * (u + grad)
u_out_e
.
device
(
eigen_ctx
)
=
m
*
(
u_e
+
grad_out_e
);
// v = u + v + grad
dev_ctx
.
template
Alloc
<
T
>(
v_out
);
phi
::
funcs
::
ElementwiseCompute
<
phi
::
funcs
::
AddFunctor
<
T
>
,
T
>
(
dev_ctx
,
u
,
v
,
phi
::
funcs
::
AddFunctor
<
T
>
(),
v_out
,
0
);
phi
::
funcs
::
ElementwiseCompute
<
phi
::
funcs
::
AddFunctor
<
T
>
,
T
>
(
dev_ctx
,
grad
,
v
,
phi
::
funcs
::
AddFunctor
<
T
>
(),
v_out
,
0
);
}
else
{
// u = m * u + grad
u_out_e
.
device
(
eigen_ctx
)
=
m
*
u_e
+
grad_out_e
;
// v = u + v
dev_ctx
.
template
Alloc
<
T
>(
v_out
);
phi
::
funcs
::
ElementwiseCompute
<
phi
::
funcs
::
AddFunctor
<
T
>
,
T
>
(
dev_ctx
,
u
,
v
,
phi
::
funcs
::
AddFunctor
<
T
>
(),
v_out
,
0
);
}
T
*
v_out_data
=
dev_ctx
.
template
Alloc
<
T
>(
v_out
);
T
*
u_out_data
=
dev_ctx
.
template
Alloc
<
T
>(
u_out
);
encode_grad_out
->
Resize
(
phi
::
DDim
{
2
*
k
});
T
*
encode_grad_out_data
=
dev_ctx
.
template
Alloc
<
T
>(
encode_grad_out
);
gather_buff
->
Resize
(
phi
::
DDim
{
2
*
k
*
nranks
});
dev_ctx
.
template
Alloc
<
T
>(
gather_buff
);
int
buf_size
=
paddle
::
communication
::
dgc
::
get_buffer_size
(
k
);
phi
::
Allocator
::
AllocationPtr
tmp_ious_data
;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
dev_ctx
.
GetPlace
().
GetType
()
==
phi
::
AllocationType
::
GPU
)
{
tmp_ious_data
=
phi
::
memory_utils
::
Alloc
(
dev_ctx
.
GetPlace
(),
buf_size
,
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
dev_ctx
.
stream
())));
}
#endif
if
(
dev_ctx
.
GetPlace
().
GetType
()
==
phi
::
AllocationType
::
CPU
)
{
tmp_ious_data
=
phi
::
memory_utils
::
Alloc
(
dev_ctx
.
GetPlace
(),
buf_size
);
}
void
*
buf
=
reinterpret_cast
<
void
*>
(
tmp_ious_data
->
ptr
());
if
(
!
paddle
::
communication
::
dgc
::
k_select
(
static_cast
<
void
*>
(
encode_grad_out_data
),
k
,
v_out_data
,
static_cast
<
int
>
(
v_out
->
numel
()),
buf
,
dev_ctx
.
stream
(),
u_out_data
))
{
// TODO(weihang): owner should polish this error message
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"V_out numel error, V_out numel is %d."
,
v_out
->
numel
()));
}
phi
::
funcs
::
SetConstant
<
Context
,
T
>
tset
;
tset
(
dev_ctx
,
grad_out
,
static_cast
<
T
>
(
0
));
}
}
// namespace phi
PD_REGISTER_KERNEL
(
dgc
,
GPU
,
ALL_LAYOUT
,
phi
::
DGCKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录