未验证 提交 3be7a6c8 编写于 作者: S Sanbu 提交者: GitHub

Support static graph code-gen for yolo_loss (#52946)

上级 49074859
......@@ -54,7 +54,6 @@ detection_library(generate_proposal_labels_op SRCS
detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc DEPS gpc)
detection_library(locality_aware_nms_op SRCS locality_aware_nms_op.cc DEPS gpc)
detection_library(box_clip_op SRCS box_clip_op.cc box_clip_op.cu)
detection_library(yolov3_loss_op SRCS yolov3_loss_op.cc)
detection_library(box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc
box_decoder_and_assign_op.cu)
detection_library(sigmoid_focal_loss_op SRCS sigmoid_focal_loss_op.cc
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/multiary.h"
namespace paddle {
namespace operators {
class Yolov3LossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
platform::CPUPlace());
}
};
class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input tensor of YOLOv3 loss operator, "
"This is a 4-D tensor with shape of [N, C, H, W]."
"H and W should be same, and the second dimension(C) stores"
"box locations, confidence score and classification one-hot"
"keys of each anchor box");
AddInput("GTBox",
"The input tensor of ground truth boxes, "
"This is a 3-D tensor with shape of [N, max_box_num, 5], "
"max_box_num is the max number of boxes in each image, "
"In the third dimension, stores x, y, w, h coordinates, "
"x, y is the center coordinate of boxes and w, h is the "
"width and height and x, y, w, h should be divided by "
"input image height to scale to [0, 1].");
AddInput("GTLabel",
"The input tensor of ground truth label, "
"This is a 2-D tensor with shape of [N, max_box_num], "
"and each element should be an integer to indicate the "
"box class id.");
AddInput("GTScore",
"The score of GTLabel, This is a 2-D tensor in same shape "
"GTLabel, and score values should in range (0, 1). This "
"input is for GTLabel score can be not 1.0 in image mixup "
"augmentation.")
.AsDispensable();
AddOutput("Loss",
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [N]");
AddOutput("ObjectnessMask",
"This is an intermediate tensor with shape of [N, M, H, W], "
"M is the number of anchor masks. This parameter caches the "
"mask for calculate objectness loss in gradient kernel.")
.AsIntermediate();
AddOutput("GTMatchMask",
"This is an intermediate tensor with shape of [N, B], "
"B is the max box number of GT boxes. This parameter caches "
"matched mask index of each GT boxes for gradient calculate.")
.AsIntermediate();
AddAttr<int>("class_num", "The number of classes to predict.");
AddAttr<std::vector<int>>("anchors",
"The anchor width and height, "
"it will be parsed pair by pair.")
.SetDefault(std::vector<int>{});
AddAttr<std::vector<int>>("anchor_mask",
"The mask index of anchors used in "
"current YOLOv3 loss calculation.")
.SetDefault(std::vector<int>{});
AddAttr<int>("downsample_ratio",
"The downsample ratio from network input to YOLOv3 loss "
"input, so 32, 16, 8 should be set for the first, second, "
"and thrid YOLOv3 loss operators.")
.SetDefault(32);
AddAttr<float>("ignore_thresh",
"The ignore threshold to ignore confidence loss.")
.SetDefault(0.7);
AddAttr<bool>("use_label_smooth",
"Whether to use label smooth. Default True.")
.SetDefault(true);
AddAttr<float>("scale_x_y",
"Scale the center point of decoded bounding "
"box. Default 1.0")
.SetDefault(1.);
AddComment(R"DOC(
This operator generates yolov3 loss based on given predict result and ground
truth boxes.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
given number bounding boxes, this given number, which following will be represented as S,
is specified by the number of anchor clusters in each scale. In the second dimension(the channel
dimension), C should be equal to S * (class_num + 5), class_num is the object
category number of source dataset(such as 80 in coco dataset), so in the
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor box.
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
should be as follows:
$$
b_x = \\sigma(t_x) + c_x
$$
$$
b_y = \\sigma(t_y) + c_y
$$
$$
b_w = p_w e^{t_w}
$$
$$
b_h = p_h e^{t_h}
$$
In the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors.
As for confidence score, it is the logistic regression value of IoU between
anchor boxes and ground truth boxes, the score of the anchor box which has
the max IoU should be 1, and if the anchor box has IoU bigger than ignore
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consists of three major parts: box location loss,
objectness loss and classification loss. The L1 loss is used for
box coordinates (w, h), sigmoid cross entropy loss is used for box
coordinates (x, y), objectness loss and classification loss.
Each groud truth box finds a best matching anchor box in all anchors.
Prediction of this anchor box will incur all three parts of losses, and
prediction of anchor boxes with no GT box matched will only incur objectness
loss.
In order to trade off box coordinate losses between big boxes and small
boxes, box coordinate losses will be mutiplied by scale weight, which is
calculated as follows.
$$
weight_{box} = 2.0 - t_w * t_h
$$
Final loss will be represented as follows.
$$
loss = (loss_{xy} + loss_{wh}) * weight_{box}
+ loss_{conf} + loss_{class}
$$
While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
target will be smoothed when calculating classification loss, target of
positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
negetive samples will be smoothed to :math:`1.0 / class\_num`.
While :attr:`GTScore` is given, which means the mixup score of ground truth
boxes, all losses incured by a ground truth box will be multiplied by its
mixup score.
)DOC");
}
};
class Yolov3LossOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
platform::CPUPlace());
}
};
template <typename T>
class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("yolov3_loss_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("GTBox", this->Input("GTBox"));
op->SetInput("GTLabel", this->Input("GTLabel"));
op->SetInput("GTScore", this->Input("GTScore"));
op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
op->SetInput("ObjectnessMask", this->Output("ObjectnessMask"));
op->SetInput("GTMatchMask", this->Output("GTMatchMask"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("GTBox"), this->EmptyInputGrad());
op->SetOutput(framework::GradVarName("GTLabel"), this->EmptyInputGrad());
op->SetOutput(framework::GradVarName("GTScore"), this->EmptyInputGrad());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss,
Yolov3LossInferShapeFunctor,
PD_INFER_META(phi::YoloLossInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss_grad,
Yolov3LossGradInferShapeFunctor,
PD_INFER_META(phi::YoloLossGradInferMeta));
REGISTER_OPERATOR(yolov3_loss,
ops::Yolov3LossOp,
ops::Yolov3LossOpMaker,
ops::Yolov3LossGradMaker<paddle::framework::OpDesc>,
ops::Yolov3LossGradMaker<paddle::imperative::OpBase>,
Yolov3LossInferShapeFunctor);
REGISTER_OPERATOR(yolov3_loss_grad,
ops::Yolov3LossOpGrad,
Yolov3LossGradInferShapeFunctor);
......@@ -156,6 +156,13 @@ phi::KernelKey GetMatrixNmsExpectedKernelType(
platform::CPUPlace());
}
phi::KernelKey GetYoloLossExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr) {
return phi::KernelKey(op_ptr->IndicateVarDataType(ctx, "X"),
platform::CPUPlace());
}
phi::KernelKey GetUniqueExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr) {
......
......@@ -48,5 +48,9 @@ phi::KernelKey GetUniqueExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr);
phi::KernelKey GetYoloLossExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr);
} // namespace operators
} // namespace paddle
......@@ -2065,6 +2065,16 @@
func : where_grad
no_need_buffer : x, y
- backward_op : yolo_loss_grad
forward : yolo_loss (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors={}, int[] anchor_mask={}, int class_num =1 , float ignore_thresh=0.7, int downsample_ratio=32, bool use_label_smooth=true, float scale_x_y=1.0) -> Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, Tensor objectness_mask, Tensor gt_match_mask, Tensor loss_grad, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth, float scale_x_y)
output : Tensor(x_grad), Tensor(gt_box_grad), Tensor(gt_label_grad), Tensor(gt_score_grad)
infer_meta :
func : YoloLossGradInferMeta
kernel :
func : yolo_loss_grad
optional : gt_score
- backward_op: unpool3d_grad
forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides={1,1,1}, int[] paddings={0,0,0}, int[] output_size={0,0,0}, str data_format="NCDHW") -> Tensor(out)
args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] paddings, int[] output_size, str data_format)
......
......@@ -1032,13 +1032,3 @@
param : [out_grad]
kernel :
func : triu_grad
- backward_op : yolo_loss_grad
forward : yolo_loss(Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) -> Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, Tensor objectness_mask, Tensor gt_match_mask, Tensor loss_grad, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0)
output : Tensor(x_grad), Tensor(gt_box_grad), Tensor(gt_label_grad), Tensor(gt_score_grad)
infer_meta :
func : YoloLossGradInferMeta
kernel :
func : yolo_loss_grad
optional : gt_score
......@@ -1198,17 +1198,6 @@
func : unique
data_type : x
- op : yolo_loss
args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0)
output : Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
infer_meta :
func : YoloLossInferMeta
kernel :
func : yolo_loss
data_type : x
optional : gt_score
backward : yolo_loss_grad
- op : zeros
args : (IntArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace())
output : Tensor(out)
......
......@@ -2511,6 +2511,16 @@
outputs :
{boxes : Boxes, scores : Scores}
- op : yolo_loss (yolov3_loss)
backward: yolo_loss_grad (yolov3_loss_grad)
inputs :
{x : X, gt_box : GTBox, gt_label : GTLabel ,gt_score : GTScore}
outputs :
{loss : Loss , objectness_mask : ObjectnessMask, gt_match_mask : GTMatchMask}
get_expected_kernel_type :
yolo_loss : GetYoloLossExpectedKernelType
yolo_loss_grad : GetYoloLossExpectedKernelType
- op: lu
backward: lu_grad
inputs:
......
......@@ -2265,3 +2265,15 @@
kernel :
func : yolo_box
data_type : x
- op : yolo_loss
args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors={}, int[] anchor_mask={}, int class_num =1 , float ignore_thresh=0.7, int downsample_ratio=32, bool use_label_smooth=true, float scale_x_y=1.0)
output : Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
infer_meta :
func : YoloLossInferMeta
kernel :
func : yolo_loss
data_type : x
optional : gt_score
intermediate : objectness_mask, gt_match_mask
backward : yolo_loss_grad
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature Yolov3LossOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature("yolo_loss",
{"X", "GTBox", "GTLabel", "GTScore"},
{"anchors",
"anchor_mask",
"class_num",
"ignore_thresh",
"downsample_ratio",
"use_label_smooth",
"scale_x_y"},
{"Loss", "ObjectnessMask", "GTMatchMask"});
}
KernelSignature Yolov3LossGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature(
"yolo_loss_grad",
{"X",
"GTBox",
"GTLabel",
"GTScore",
"ObjectnessMask",
"GTMatchMask",
"Loss@GRAD"},
{"anchors",
"anchor_mask",
"class_num",
"ignore_thresh",
"downsample_ratio",
"use_label_smooth",
"scale_x_y"},
{"X@GRAD", "GTBox@GRAD", "GTLabel@GRAD", "GTScore@GRAD"});
}
} // namespace phi
PD_REGISTER_BASE_KERNEL_NAME(yolov3_loss, yolo_loss);
PD_REGISTER_BASE_KERNEL_NAME(yolov3_loss_grad, yolo_loss_grad);
PD_REGISTER_ARG_MAPPING_FN(yolov3_loss, phi::Yolov3LossOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(yolov3_loss_grad,
phi::Yolov3LossGradOpArgumentMapping);
......@@ -192,7 +192,7 @@ def yolo_loss(
"""
if in_dygraph_mode():
loss, _, _ = _C_ops.yolo_loss(
loss = _C_ops.yolo_loss(
x,
gt_box,
gt_label,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册