Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3bc305b6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3bc305b6
编写于
6月 11, 2019
作者:
L
lijianshe02
提交者:
GitHub
6月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add conv2d, pool2d op and kernels test=develop (#17939)
* add conv2d, pool2d op and kernels test=develop
上级
a5241e1d
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
562 addition
and
0 deletion
+562
-0
paddle/fluid/lite/api/cxx_api_test.cc
paddle/fluid/lite/api/cxx_api_test.cc
+6
-0
paddle/fluid/lite/core/hvy_tensor.h
paddle/fluid/lite/core/hvy_tensor.h
+3
-0
paddle/fluid/lite/kernels/x86/CMakeLists.txt
paddle/fluid/lite/kernels/x86/CMakeLists.txt
+4
-0
paddle/fluid/lite/kernels/x86/conv_compute.cc
paddle/fluid/lite/kernels/x86/conv_compute.cc
+169
-0
paddle/fluid/lite/kernels/x86/pool_compute.cc
paddle/fluid/lite/kernels/x86/pool_compute.cc
+80
-0
paddle/fluid/lite/operators/CMakeLists.txt
paddle/fluid/lite/operators/CMakeLists.txt
+4
-0
paddle/fluid/lite/operators/conv_op.cc
paddle/fluid/lite/operators/conv_op.cc
+60
-0
paddle/fluid/lite/operators/conv_op.h
paddle/fluid/lite/operators/conv_op.h
+94
-0
paddle/fluid/lite/operators/pool_op.cc
paddle/fluid/lite/operators/pool_op.cc
+78
-0
paddle/fluid/lite/operators/pool_op.h
paddle/fluid/lite/operators/pool_op.h
+64
-0
未找到文件。
paddle/fluid/lite/api/cxx_api_test.cc
浏览文件 @
3bc305b6
...
...
@@ -131,6 +131,9 @@ USE_LITE_OP(square)
USE_LITE_OP
(
softmax
)
USE_LITE_OP
(
dropout
)
USE_LITE_OP
(
concat
)
USE_LITE_OP
(
conv2d
)
USE_LITE_OP
(
depthwise_conv2d
)
USE_LITE_OP
(
pool2d
)
USE_LITE_KERNEL
(
feed
,
kHost
,
kAny
,
kAny
,
def
);
USE_LITE_KERNEL
(
fetch
,
kHost
,
kAny
,
kAny
,
def
);
...
...
@@ -145,6 +148,9 @@ USE_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL
(
softmax
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
dropout
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
concat
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
conv2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
depthwise_conv2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
pool2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
#endif
#ifdef LITE_WITH_CUDA
...
...
paddle/fluid/lite/core/hvy_tensor.h
浏览文件 @
3bc305b6
...
...
@@ -110,6 +110,9 @@ class TensorHvy : public TensorBase<TensorHvy> {
void
ShareDataWith
(
const
TensorHvy
&
other
)
{
data_
.
ShareDataWith
(
other
.
data_
);
}
void
ShareDataWith
(
const
framework
::
Tensor
&
other
)
{
data_
.
ShareDataWith
(
other
);
}
void
CopyDataFrom
(
const
TensorHvy
&
other
)
{
data_
.
mutable_data
(
other
.
data_
.
place
(),
other
.
data_
.
type
());
TensorCopySync
(
other
.
data_
,
data_
.
place
(),
&
data_
);
...
...
paddle/fluid/lite/kernels/x86/CMakeLists.txt
浏览文件 @
3bc305b6
...
...
@@ -15,6 +15,8 @@ cc_library(elementwise_compute_x86 SRCS elementwise_compute.cc DEPS ${lite_kerne
cc_library
(
softmax_compute_x86 SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
softmax
)
cc_library
(
dropout_compute_x86 SRCS dropout_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
concat_compute_x86 SRCS concat_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
conv_compute_x86 SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
blas im2col vol2col
)
cc_library
(
pool_compute_x86 SRCS pool_compute.cc DEPS
${
lite_kernel_deps
}
pooling
)
set
(
x86_kernels
activation_compute_x86
...
...
@@ -28,6 +30,8 @@ set(x86_kernels
softmax_compute_x86
dropout_compute_x86
concat_compute_x86
conv_compute_x86
pool_compute_x86
)
set
(
x86_kernels
"
${
x86_kernels
}
"
CACHE INTERNAL
"x86 kernels"
)
paddle/fluid/lite/kernels/x86/conv_compute.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/operators/conv_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>&
filter_dim
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
template
<
typename
T
>
class
Conv2dCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ConvParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ConvParam
>
();
lite
::
Tensor
filter
=
*
param
.
filter
;
param
.
output
->
template
mutable_data
<
T
>();
const
int
batch_size
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
filter
.
dims
().
Vectorize
());
std
::
vector
<
int64_t
>
output_shape_vec
(
param
.
output
->
dims
().
Vectorize
());
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
param
.
x
->
dims
()[
1
]
/
param
.
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
lite
::
DDim
col_shape
(
col_shape_vec
);
lite
::
DDim
col_matrix_shape
=
col_shape
.
Flattern2D
(
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
param
.
strides
,
param
.
paddings
,
param
.
dilations
);
lite
::
Tensor
col
;
lite
::
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
Resize
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
lite
::
DDim
input_shape
=
param
.
x
->
dims
().
Slice
(
1
,
param
.
x
->
dims
().
size
());
lite
::
DDim
filter_matrix_shape
(
std
::
vector
<
int64_t
>
{
filter
.
dims
()[
0
],
filter
.
dims
().
production
()
/
filter
.
dims
()[
0
]});
filter
.
Resize
(
filter_matrix_shape
);
lite
::
DDim
output_matrix_shape
(
std
::
vector
<
int64_t
>
{
param
.
output
->
dims
()[
1
],
param
.
output
->
dims
().
production
()
/
(
param
.
output
->
dims
()[
0
]
*
param
.
output
->
dims
()[
1
])});
int
in_step
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
1
])
/
param
.
groups
;
int
out_step
=
static_cast
<
int
>
(
param
.
output
->
dims
()[
1
])
/
param
.
groups
;
paddle
::
operators
::
math
::
Vol2ColFunctor
<
platform
::
CPUDeviceContext
,
T
>
vol2col
;
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
platform
::
CPUDeviceContext
,
T
>
im2col
;
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
platform
::
CPUDeviceContext
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
lite
::
Tensor
in_batch
;
in_batch
.
ShareDataWith
(
param
.
x
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
.
data
()));
lite
::
Tensor
out_batch
;
out_batch
.
ShareDataWith
(
param
.
output
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
.
data
()));
for
(
int
g
=
0
;
g
<
param
.
groups
;
g
++
)
{
lite
::
Tensor
in_slice
;
in_slice
.
ShareDataWith
(
in_batch
.
raw_tensor
().
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
));
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
std
::
vector
<
int
>
{
param
.
paddings
[
0
],
param
.
paddings
[
1
],
param
.
paddings
[
0
],
param
.
paddings
[
1
]},
&
(
col
.
raw_tensor
()));
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
param
.
paddings
,
&
(
col
.
raw_tensor
()));
}
// gemm
lite
::
Tensor
out_slice
;
out_slice
.
ShareDataWith
(
out_batch
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
lite
::
Tensor
filter_slice
;
filter_slice
.
ShareDataWith
(
filter
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
blas
.
MatMul
(
filter_slice
.
raw_tensor
(),
false
,
col_matrix
.
raw_tensor
(),
false
,
T
(
1.0
),
&
(
out_slice
.
raw_tensor
()),
T
(
0.0
));
}
}
}
virtual
~
Conv2dCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
conv2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
Conv2dCompute
<
float
>
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
depthwise_conv2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
Conv2dCompute
<
float
>
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
paddle/fluid/lite/kernels/x86/pool_compute.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
PoolCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
PoolParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
if
(
param
.
global_pooling
)
{
for
(
size_t
i
=
0
;
i
<
param
.
ksize
.
size
();
++
i
)
{
param
.
paddings
[
i
]
=
0
;
param
.
ksize
[
i
]
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
i
+
2
]);
}
}
switch
(
param
.
ksize
.
size
())
{
case
2
:
{
if
(
param
.
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
true
,
false
,
&
(
param
.
output
->
raw_tensor
()));
}
else
if
(
param
.
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
param
.
exclusive
,
param
.
adaptive
,
&
(
param
.
output
->
raw_tensor
()));
}
}
break
;
case
3
:
{
}
break
;
}
}
virtual
~
PoolCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
pool2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
PoolCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
paddle/fluid/lite/operators/CMakeLists.txt
浏览文件 @
3bc305b6
...
...
@@ -17,6 +17,8 @@ cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
cc_library
(
op_params_lite SRCS op_params.cc DEPS
${
tensor_lite
}
any_lite framework_proto_lite
)
cc_library
(
dropout_op_lite SRCS dropout_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
concat_op_lite SRCS concat_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
conv_op_lite SRCS conv_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
pool_op_lite SRCS pool_op.cc DEPS
${
op_DEPS
}
)
set
(
ops_lite
fc_op_lite
...
...
@@ -34,6 +36,8 @@ set(ops_lite
activation_ops_lite
dropout_op_lite
concat_op_lite
conv_op_lite
pool_op_lite
PARENT_SCOPE
)
lite_cc_test
(
test_fc_op_lite SRCS fc_op_test.cc
...
...
paddle/fluid/lite/operators/conv_op.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/conv_op.h"
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
ConvOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
output
);
CHECK_OR_FALSE
(
param_
.
filter
);
return
true
;
}
bool
ConvOpLite
::
InferShape
()
const
{
auto
in_dims
=
param_
.
x
->
dims
();
auto
filter_dims
=
param_
.
filter
->
dims
();
std
::
vector
<
int
>
strides
=
param_
.
strides
;
std
::
vector
<
int
>
paddings
=
param_
.
paddings
;
int
groups
=
param_
.
groups
;
std
::
vector
<
int
>
dilations
=
param_
.
dilations
;
CHECK_OR_FALSE
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
);
CHECK_EQ_OR_FALSE
(
in_dims
.
size
(),
filter_dims
.
size
());
CHECK_OR_FALSE
(
in_dims
.
size
()
-
strides
.
size
()
==
2U
);
CHECK_EQ_OR_FALSE
(
paddings
.
size
(),
strides
.
size
());
CHECK_EQ_OR_FALSE
(
in_dims
[
1
],
filter_dims
[
1
]
*
groups
);
CHECK_EQ_OR_FALSE
(
filter_dims
[
0
]
%
groups
,
0
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
param_
.
output
->
Resize
(
lite
::
DDim
(
output_shape
));
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
conv2d
,
paddle
::
lite
::
operators
::
ConvOpLite
);
REGISTER_LITE_OP
(
depthwise_conv2d
,
paddle
::
lite
::
operators
::
ConvOpLite
);
paddle/fluid/lite/operators/conv_op.h
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
inline
int
ConvOutputSize
(
int
input_size
,
int
filter_size
,
int
dilation
,
int
padding
,
int
stride
)
{
const
int
dkernel
=
dilation
*
(
filter_size
-
1
)
+
1
;
int
output_size
=
(
input_size
+
2
*
padding
-
dkernel
)
/
stride
+
1
;
CHECK_OR_FALSE
(
output_size
>
0
);
return
output_size
;
}
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>&
filter_dim
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
class
ConvOpLite
:
public
OpLite
{
public:
ConvOpLite
()
{}
explicit
ConvOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
auto
X
=
op_desc
.
Input
(
"Input"
).
front
();
auto
Filter
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
Bias
=
op_desc
.
Input
(
"Bias"
).
front
();
// auto ResidualData = op_desc.Input("ResidualData");
auto
Out
=
op_desc
.
Output
(
"Output"
).
front
();
param_
.
x
=
scope
->
FindVar
(
X
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
filter
=
scope
->
FindVar
(
Filter
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
bias
=
scope
->
FindVar
(
Bias
)
->
GetMutable
<
lite
::
Tensor
>
();
// param_.residualData =
// scope->FindVar(ResidualData)->GetMutable<lite::Tensor>();
param_
.
output
=
scope
->
FindVar
(
Out
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
strides
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
param_
.
paddings
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
param_
.
groups
=
op_desc
.
GetAttr
<
int
>
(
"groups"
);
param_
.
dilations
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"dilations"
);
return
true
;
}
std
::
string
DebugString
()
const
override
{
return
"conv2d"
;
}
private:
mutable
ConvParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/operators/pool_op.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/pool_op.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
int
PoolOutputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
,
bool
ceil_mode
)
{
int
output_size
;
if
(
!
ceil_mode
)
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
}
else
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
CHECK_OR_FALSE
(
output_size
>
0
);
return
output_size
;
}
bool
PoolOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
output
);
return
true
;
}
bool
PoolOpLite
::
InferShape
()
const
{
const
auto
input_dims
=
param_
.
x
->
dims
();
CHECK_OR_FALSE
(
input_dims
.
size
()
==
4
||
input_dims
.
size
()
==
5
);
if
(
param_
.
global_pooling
)
{
param_
.
ksize
.
resize
(
static_cast
<
size_t
>
(
input_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
param_
.
ksize
.
size
();
++
i
)
{
param_
.
paddings
[
i
]
=
0
;
param_
.
ksize
[
i
]
=
static_cast
<
int
>
(
input_dims
[
i
+
2
]);
}
}
CHECK_OR_FALSE
(
input_dims
.
size
()
-
param_
.
ksize
.
size
()
==
2U
);
CHECK_EQ_OR_FALSE
(
param_
.
ksize
.
size
(),
param_
.
strides
.
size
());
CHECK_EQ_OR_FALSE
(
param_
.
ksize
.
size
(),
param_
.
paddings
.
size
());
std
::
vector
<
int64_t
>
output_shape
({
input_dims
[
0
],
input_dims
[
1
]});
if
(
param_
.
adaptive
)
{
output_shape
.
insert
(
output_shape
.
end
(),
param_
.
ksize
.
begin
(),
param_
.
ksize
.
end
());
}
else
{
for
(
size_t
i
=
0
;
i
<
param_
.
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
PoolOutputSize
(
input_dims
[
i
+
2
],
param_
.
ksize
[
i
],
param_
.
paddings
[
i
],
param_
.
strides
[
i
],
param_
.
ceil_mode
));
}
}
// share LoD
// param_.output->set_lod(param_.input->lod());
param_
.
output
->
Resize
(
lite
::
DDim
(
output_shape
));
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
pool2d
,
paddle
::
lite
::
operators
::
PoolOpLite
);
paddle/fluid/lite/operators/pool_op.h
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
PoolOpLite
:
public
OpLite
{
public:
PoolOpLite
()
{}
explicit
PoolOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
auto
input
=
op_desc
.
Input
(
"X"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
param_
.
x
=
scope
->
FindVar
(
input
)
->
GetMutable
<
Tensor
>
();
param_
.
output
=
scope
->
FindVar
(
out
)
->
GetMutable
<
Tensor
>
();
param_
.
pooling_type
=
op_desc
.
GetAttr
<
std
::
string
>
(
"pooling_type"
);
param_
.
ksize
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"ksize"
);
param_
.
strides
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
param_
.
paddings
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
param_
.
ceil_mode
=
op_desc
.
GetAttr
<
bool
>
(
"ceil_mode"
);
param_
.
adaptive
=
op_desc
.
GetAttr
<
bool
>
(
"adaptive"
);
param_
.
global_pooling
=
op_desc
.
GetAttr
<
bool
>
(
"global_pooling"
);
return
true
;
}
std
::
string
DebugString
()
const
override
{
return
"pool"
;
}
private:
mutable
PoolParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录