You need to sign in or sign up before continuing.
提交 3bb1f98b 编写于 作者: Y Yu Yang

Merge branch 'develop' into feature/op_library

......@@ -25,7 +25,7 @@ COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y \
git python-pip python-dev openssh-server bison \
wget unzip tar xz-utils bzip2 gzip coreutils ntp \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-numpy python-matplotlib gcc g++ \
automake locales clang-format-3.8 swig doxygen cmake \
......
......@@ -11,6 +11,7 @@ import (
"github.com/namsral/flag"
log "github.com/sirupsen/logrus"
"github.com/topicai/candy"
"github.com/PaddlePaddle/Paddle/go/master"
"github.com/PaddlePaddle/Paddle/go/utils/networkhelper"
......@@ -20,11 +21,18 @@ func main() {
port := flag.Int("port", 8080, "port of the master server.")
ttlSec := flag.Int("ttl", 60, "etcd lease TTL in seconds.")
endpoints := flag.String("endpoints", "http://127.0.0.1:2379", "comma separated etcd endpoints. If empty, fault tolerance will not be enabled.")
taskTimeoutDur := flag.Duration("task_timout_dur", 20*time.Minute, "task timout duration.")
taskTimeoutMax := flag.Int("task_timeout_max", 3, "max timtout count for each task before it being declared failed task.")
chunkPerTask := flag.Int("chunk_per_task", 10, "chunk per task.")
taskTimeoutDur := flag.Duration("task-timout-dur", 20*time.Minute, "task timout duration.")
taskTimeoutMax := flag.Int("task-timeout-max", 3, "max timtout count for each task before it being declared failed task.")
chunkPerTask := flag.Int("chunk-per-task", 10, "chunk per task.")
logLevel := flag.String("log-level", "info",
"log level, possible values: debug, info, warning, error, fatal, panic")
flag.Parse()
level, e := log.ParseLevel(*logLevel)
candy.Must(e)
log.SetLevel(level)
if *endpoints == "" {
log.Warningln("-endpoints not set, fault tolerance not be enabled.")
}
......
......@@ -40,7 +40,7 @@ func main() {
idx = *index
} else {
e = pserver.NewEtcdClient(*etcdEndpoint, *numPservers, *etcdTimeout)
idx, err = e.Register()
idx, err = e.Register(*port)
candy.Must(err)
cp, err = pserver.NewCheckpointFromFile(*checkpointPath, idx, e)
......
......@@ -2,6 +2,7 @@ package master
import (
"os"
"time"
"github.com/PaddlePaddle/Paddle/go/connection"
"github.com/PaddlePaddle/recordio"
......@@ -36,9 +37,9 @@ func (c *Client) getRecords() {
for {
t, err := c.getTask()
if err != nil {
// TODO(helin): wait before move on with next
// getTask call.
log.Errorln(err)
log.Errorf("Get task failed, sleep 3 seconds and continue, %s", err)
time.Sleep(3 * time.Second)
continue
}
......
......@@ -215,6 +215,7 @@ func readChunks(globPaths []string) ([]Chunk, error) {
}
count := index.NumChunks()
log.Infof("readChunks: file %s has %d chunks", path, count)
for i := 0; i < count; i++ {
chunk := Chunk{
Path: path,
......
import paddle.v2 as paddle
import paddle.v2.dataset.uci_housing as uci_housing
import paddle.v2.master as master
import os
import cPickle as pickle
etcd_ip = os.getenv("MASTER_IP", "127.0.0.1")
etcd_endpoint = "http://" + etcd_ip + ":2379"
def cloud_reader():
print "connecting to master, etcd endpoints: ", etcd_endpoint
master_client = master.client(etcd_endpoint, 5, 64)
master_client.set_dataset(
["/pfs/dlnel/public/dataset/uci_housing/uci_housing-*-of-*"])
while 1:
r, e = master_client.next_record()
if not r:
break
yield pickle.loads(r)
def main():
......@@ -22,13 +40,13 @@ def main():
# create optimizer of new remote updater to pserver
optimizer = paddle.optimizer.Momentum(momentum=0)
#TODO(zhihong) : replace optimizer with new OptimizerConfig
print "etcd endoint: ", etcd_endpoint
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer,
is_local=False,
pserver_spec="localhost:3000")
pserver_spec=etcd_endpoint,
use_etcd=True)
# event_handler to print training and testing info
def event_handler(event):
......@@ -47,11 +65,11 @@ def main():
print "Test %d, %.2f" % (event.pass_id, result.cost)
# training
# NOTE: use uci_housing.train() as reader for non-paddlecloud training
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
uci_housing.train(), buf_size=500),
batch_size=2),
cloud_reader, buf_size=500), batch_size=2),
feeding={'x': 0,
'y': 1},
event_handler=event_handler,
......
......@@ -12,6 +12,7 @@ import (
)
const (
// DefaultEtcdTimeout is the default etcd timeout
DefaultEtcdTimeout time.Duration = 5 * time.Second
)
......@@ -66,12 +67,12 @@ func (p *EtcdClient) List() []Server {
for {
for i := 0; i < psDesired; i++ {
ctx, cancel := context.WithTimeout(context.Background(), p.timeout)
cancel()
psKey := pserver.PsPath + strconv.Itoa(i)
log.Debugf("checking %s", psKey)
resp, err := p.client.Get(ctx, psKey)
cancel()
if err != nil {
log.Infof("Get psKey= %s error, %v", psKey, err)
log.Infof("Get psKey=%s error, %v", psKey, err)
time.Sleep(p.timeout)
continue
}
......
......@@ -49,7 +49,7 @@ func NewEtcdClient(endpoints string, numPservers int, timeout time.Duration) *Et
// Register registers the pserver on etcd
//
// Register returns the index of the current pserver.
func (e *EtcdClient) Register() (int, error) {
func (e *EtcdClient) Register(port int) (int, error) {
var err error
e.externalIP, err = networkhelper.GetExternalIP()
......@@ -116,7 +116,7 @@ func (e *EtcdClient) Register() (int, error) {
for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
var err error
pserverIdx, err = e.registerPserverEtcd(ctx)
pserverIdx, err = e.registerPserverEtcd(ctx, port)
cancel()
if err != nil {
log.Warn(err)
......@@ -140,7 +140,7 @@ func (e *EtcdClient) initDesiredPservers(ctx context.Context, numPservers int) (
}
// registerPserverEtcd registers pserver node on etcd using transaction.
func (e *EtcdClient) registerPserverEtcd(ctx context.Context) (int, error) {
func (e *EtcdClient) registerPserverEtcd(ctx context.Context, port int) (int, error) {
var idx int
_, err := concurrency.NewSTM(e.etcdClient, func(c concurrency.STM) error {
registered := false
......@@ -156,8 +156,9 @@ func (e *EtcdClient) registerPserverEtcd(ctx context.Context) (int, error) {
log.Fatal(err)
}
// find the first id and write info
c.Put(psKey, e.externalIP, clientv3.WithLease(resp.ID))
log.Debugf("set pserver node %s with value %s", psKey, e.externalIP)
pserverAddr := e.externalIP + ":" + strconv.Itoa(port)
c.Put(psKey, pserverAddr, clientv3.WithLease(resp.ID))
log.Debugf("set pserver node %s with value %s", psKey, pserverAddr)
ch, kaerr := e.etcdClient.KeepAlive(context.TODO(), resp.ID)
if kaerr != nil {
log.Errorf("keepalive etcd node error: %v", kaerr)
......
......@@ -843,7 +843,8 @@ public:
bool useSparseUpdater);
static ParameterUpdater* createNewRemoteUpdater(
OptimizationConfig* config,
const std::string pserverSpec) throw(UnsupportError);
const std::string pserverSpec,
const bool useEtcd) throw(UnsupportError);
~ParameterUpdater();
/**
......
......@@ -33,11 +33,12 @@ ParameterUpdater *ParameterUpdater::createLocalUpdater(
ParameterUpdater *ParameterUpdater::createNewRemoteUpdater(
OptimizationConfig *config,
const std::string pserverSpec) throw(UnsupportError) {
const std::string pserverSpec,
const bool useEtcd) throw(UnsupportError) {
#ifndef PADDLE_WITHOUT_GOLANG
auto updater = new ParameterUpdater();
updater->m->updater.reset(new paddle::NewRemoteParameterUpdater(
config->m->getConfig(), pserverSpec));
config->m->getConfig(), pserverSpec, useEtcd));
return updater;
#else
throw UnsupportError();
......
......@@ -11,8 +11,10 @@ proto_library(op_proto SRCS op_proto.proto DEPS attr_type)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
proto_library(op_desc SRCS op_desc.proto DEPS attr_type)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(operator SRCS operator.cc DEPS op_desc device_context)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto op_desc)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry operator)
py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto)
......@@ -21,4 +23,5 @@ add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch
add_dependencies(framework_py_proto framework_py_proto_init)
proto_library(net_proto SRCS net_proto.proto DEPS op_proto)
cc_library(net SRCS net.cc DEPS net_proto)
cc_library(net SRCS net.cc DEPS operator net_proto op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
......@@ -19,18 +19,41 @@
namespace paddle {
namespace framework {
PlainNet::PlainNet(const NetDesc& def) {}
void PlainNet::InferShape(const ScopePtr& scope) const {
void PlainNet::CompleteAddOp() {
std::unordered_set<std::string> input_set;
std::unordered_set<std::string> output_set;
std::unordered_set<std::string> temp_output;
for (auto& op : ops_) {
op.InferShape();
for (auto& ipt : op->inputs_) {
if (!Contains(output_set, ipt)) { // Not other op's output
input_set.insert(ipt);
} else {
temp_output.insert(ipt);
}
}
for (auto& opt : op->outputs_) {
output_set.insert(opt);
}
}
}
void PlainNet::Run(const ScopePtr& scope, const DeviceContext& ctx) const {
for (auto& op : ops_) {
op.Run(ctx);
inputs_.reserve(input_set.size());
std::copy(input_set.begin(), input_set.end(), std::back_inserter(inputs_));
outputs_.reserve(output_set.size());
std::vector<int> tmp_index;
tmp_index.reserve(temp_output.size());
int idx = 0;
for (auto& opt : output_set) {
if (Contains(temp_output, opt)) {
tmp_index.push_back(idx);
}
outputs_.push_back(opt);
++idx;
}
attrs_["temporary_index"] = tmp_index;
add_op_done_ = true;
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/operator.h>
#include "paddle/framework/net_proto.pb.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
#include "paddle/platform/device_context.h"
namespace paddle {
namespace framework {
using namespace paddle::platform;
// operator's index stored in a network.
typedef int OpIndex;
/**
* NOTE following codes are some definitions of unimplemented concepts.
* We write some basic implementation to make Net compilable. These APIs will
* keep updating if the concepts related are implemented.
*/
struct OpDesc;
struct OpAttrs {};
class Operator {
public:
Operator(const OpDesc &def) {}
void InferShape() const {}
void Run(const DeviceContext &ctx) const {}
};
/**
* @brief Network that manage the operators it has.
* @brief Network is also a type of Operator
*
* It will manage the operators it has.
*
* Network is the container and controller of a set of operators, user can build
* a real network from a NetDesc which is a protobuf message and use
* Network.Run() * to run all the operators in the network.
* Network is the container and controller of a set of operators.
* A network object knows all Operators belonging to this network. Variables,
* which are inputs and outputs of these operators, are created and managed by a
* hierarchy of Scope objects.
*
* This is the base class of network, all the networks should implement the apis
* This is the base class of network, all the networks should implement the APIs
* it defines.
*/
class Net {
class Net : public OperatorBase {
public:
/**
* @brief Infer shapes of all inputs and outputs of operators.
*/
virtual void InferShape(const ScopePtr &scope) const = 0;
/**
* @brief Run the network.
*
* Run all the operators and return success(true) or not, with all the
* variables are located in `scope`. `context` describes the detail execution
* environment for ops. `begin` and `end` specify the scope of `ops_` to run,
* If no positive indexes are provided, all operators in `ops_` will run.
*/
virtual void Run(const ScopePtr &scope, const DeviceContext &ctx) const = 0;
/**
* @brief Add an Operator according to `def`.
*/
virtual OpIndex AddOp(const OpProto &def) = 0;
/**
* @brief Add optimizer operators acctording to `attrs`.
*/
virtual void AddOptimizerOps(const OpAttrs &attrs) = 0;
/**
* @brief Add backward operators.
*/
virtual void AddBackwardOps() = 0;
/**
* @brief Create a network.
*/
static std::unique_ptr<Net> Create(const NetDesc &def = NetDesc());
virtual ~Net() {}
virtual void AddOp(const OperatorPtr& op) = 0;
virtual void CompleteAddOp() = 0;
};
using NetPtr = std::shared_ptr<Net>;
/**
* @brief a basic implementation of Net.
*
......@@ -103,18 +55,14 @@ class Net {
class PlainNet : public Net {
public:
/**
* @brief Initialize a PlainNet.
*
* Initialize from a network describe by `def`. NetDesc is the definition of
* a network.
*/
PlainNet(const NetDesc &def);
/**
* Infer all the operators' input and output varialbes' shapes, will be called
* Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch
*/
virtual void InferShape(const ScopePtr &scope) const override;
void InferShape(const ScopePtr& scope) const override {
for (auto& op : ops_) {
op->InferShape(scope);
}
}
/**
* @brief Run the network.
......@@ -123,49 +71,32 @@ class PlainNet : public Net {
* scope will be used instead. If no OpContext is provicded, default context
* will be used.
*/
virtual void Run(const ScopePtr &scope,
const DeviceContext &ctx) const override;
void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const override {
for (auto& op : ops_) {
op->Run(scope, dev_ctx);
}
}
/**
* @brief Add an operator to this network.
* @brief Add an operator by ptr
*/
virtual OpIndex AddOp(const OpProto &def) override;
void AddOp(const OperatorPtr& op) override {
PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed");
ops_.push_back(op);
}
/**
* @brief Add all optimizer operators related into the network.
*/
virtual void AddOptimizerOps(const OpAttrs &attrs) override;
void CompleteAddOp() override;
/**
* @brief Add all backward operators related into the network.
*/
virtual void AddBackwardOps() override;
virtual ~PlainNet() override {}
protected:
/**
* @brief Build the network.
*
* Create operators accordding to `def`, will be called by the constructor.
*/
void BuildNet(const NetDesc &def);
/**
* @brief Add an operator into this network.
*
* Add a operator which is identified as `type` and has attributes described
* in `attrs`, the `inputs` are the keys of readonly input variables,
* `outputs` are keys of mutable output variables. An `OpIndex` will be
* returned to indicate the offset of the new operator in `ops_`.
*/
OpIndex AddOp(const std::string &type, const std::vector<std::string> &inputs,
const std::vector<std::string> &outputs,
const OpAttrs &attrs = OpAttrs());
std::vector<OperatorPtr> ops_;
private:
// the operators owned by `Network`.
std::vector<Operator> ops_;
bool add_op_done_{false};
template <typename T, typename KeyType>
static bool Contains(T container, KeyType key) {
return container.find(key) != container.end();
}
};
} // namespace framework
......
#include <gtest/gtest.h>
#include <paddle/framework/net.h>
#include <paddle/framework/op_registry.h>
#include <paddle/framework/operator.h>
namespace pd = paddle::framework;
static int infer_shape_cnt = 0;
static int run_cnt = 0;
class TestOp : public pd::OperatorBase {
public:
void InferShape(const paddle::framework::ScopePtr& scope) const override {
++infer_shape_cnt;
}
void Run(const paddle::framework::ScopePtr& scope,
const paddle::platform::DeviceContext& dev_ctx) const override {
++run_cnt;
}
};
template <typename T>
void AssertSameVectorWithoutOrder(const std::vector<T>& expected,
const std::vector<T>& actual) {
ASSERT_EQ(expected.size(), actual.size());
std::unordered_set<T> expected_set;
for (auto& tmp : expected) {
expected_set.insert(tmp);
}
for (auto& act : actual) {
ASSERT_NE(expected_set.end(), expected_set.find(act));
}
}
TEST(OpKernel, all) {
auto net = std::make_shared<paddle::framework::PlainNet>();
ASSERT_NE(net, nullptr);
auto op1 = std::make_shared<TestOp>();
op1->inputs_ = {"x", "w1", "b1"};
op1->outputs_ = {"y"};
net->AddOp(op1);
auto op2 = std::make_shared<TestOp>();
op2->inputs_ = {"y", "w2", "b2"};
op2->outputs_ = {"z"};
net->AddOp(op2);
net->CompleteAddOp();
AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, net->inputs_);
AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_);
auto tmp_idx_iter = net->attrs_.find("temporary_index");
ASSERT_NE(net->attrs_.end(), tmp_idx_iter);
auto& tmp_idx = boost::get<std::vector<int>>(tmp_idx_iter->second);
ASSERT_EQ(1UL, tmp_idx.size());
ASSERT_EQ("y", net->outputs_[tmp_idx[0]]);
auto scope = std::make_shared<pd::Scope>();
paddle::platform::CPUDeviceContext dev_ctx;
net->InferShape(scope);
net->Run(scope, dev_ctx);
ASSERT_EQ(2, infer_shape_cnt);
ASSERT_EQ(2, run_cnt);
ASSERT_THROW(net->AddOp(op2), paddle::framework::EnforceNotMet);
}
......@@ -201,7 +201,7 @@ class OpRegistry {
static OperatorPtr CreateOp(const OpDesc& op_desc) {
std::string op_type = op_desc.type();
OperatorPtr op(creators().at(op_type)());
op->desc_ = op_desc;
op->type_ = op_desc.type();
op->inputs_.reserve((size_t)op_desc.inputs_size());
std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
std::back_inserter(op->inputs_));
......@@ -241,12 +241,18 @@ class OpRegisterHelper {
}
};
/**
* check if MACRO is used in GLOBAL NAMESPACE.
*/
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg) \
struct __test_global_namespace_##uniq_name##__ {}; \
static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \
__test_global_namespace_##uniq_name##__>::value, \
msg)
/**
* Macro to Register Operator.
*/
#define REGISTER_OP(__op_type, __op_class, __op_maker_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type, \
"REGISTER_OP must be in global namespace"); \
......@@ -254,9 +260,12 @@ class OpRegisterHelper {
__op_register_##__op_type##__(#__op_type); \
int __op_register_##__op_type##_handle__() { return 0; }
#define REGISTER_OP_KERNEL(type, GPU_OR_CPU, PlaceType, KernelType) \
/**
* Macro to Register OperatorKernel.
*/
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, KernelType) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##type##_##GPU_OR_CPU##__, \
__reg_op_kernel_##type##_##DEVICE_TYPE##__, \
"REGISTER_OP_KERNEL must be in global namespace"); \
struct __op_kernel_register__##type##__ { \
__op_kernel_register__##type##__() { \
......@@ -267,7 +276,7 @@ class OpRegisterHelper {
} \
}; \
static __op_kernel_register__##type##__ __reg_kernel_##type##__; \
int __op_kernel_register_##type##_handle_##GPU_OR_CPU##__() { return 0; }
int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
#define REGISTER_OP_GPU_KERNEL(type, KernelType) \
REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, KernelType)
......@@ -275,6 +284,10 @@ class OpRegisterHelper {
#define REGISTER_OP_CPU_KERNEL(type, KernelType) \
REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, KernelType)
/**
* Macro to mark what Operator and Kernel we will use and tell the compiler to
* link them into target.
*/
#define USE_OP_WITHOUT_KERNEL(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_without_kernel_##op_type, \
......@@ -292,15 +305,16 @@ class OpRegisterHelper {
__attribute__((unused)) = \
__op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) \
// use Operator with only cpu kernel.
#define USE_OP_CPU(op_type) \
USE_OP_WITHOUT_KERNEL(op_type); \
USE_OP_KERNEL(op_type, CPU);
USE_OP_KERNEL(op_type, CPU)
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
#else
#define USE_OP(op_type) \
USE_OP_WITHOUT_KERNEL(op_type); \
USE_OP_KERNEL(op_type, CPU); \
#define USE_OP(op_type) \
USE_OP_CPU(op_type); \
USE_OP_KERNEL(op_type, GPU)
#endif
......
......@@ -20,7 +20,7 @@ namespace framework {
std::string OperatorBase::DebugString() const {
std::stringstream ss;
ss << "=================\n";
ss << "type = " << desc_.type() << "\n";
ss << "type = " << type_ << "\n";
ss << "inputs = [";
for (auto& ipt : inputs_) {
ss << ipt << ", ";
......
......@@ -62,11 +62,8 @@ class OperatorBase {
virtual void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const = 0;
protected:
std::string Type() const { return desc_.type(); }
public:
OpDesc desc_;
std::string type_;
std::vector<std::string> inputs_;
std::vector<std::string> outputs_;
AttributeMap attrs_;
......@@ -142,7 +139,7 @@ class OperatorWithKernel : public OperatorBase {
void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const final {
auto& opKernel = AllOpKernels().at(Type()).at(OpKernelKey(dev_ctx));
auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx));
}
......
......@@ -19,14 +19,18 @@ limitations under the License. */
namespace paddle {
namespace framework {
class OperatorTest : public OperatorBase {
static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase {
public:
void Init() override { x = 1; }
void InferShape(const ScopePtr& scope) const override {}
void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const override {
float scale = GetAttr<float>("scale");
ASSERT_NEAR(scale, 3.14, 1e-5);
op_run_num++;
ASSERT_EQ((int)inputs_.size(), 1);
ASSERT_EQ((int)outputs_.size(), 1);
ASSERT_NEAR(GetAttr<float>("scale"), 3.14, 1e-5);
ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr);
ASSERT_EQ(x, 1);
ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr);
......@@ -36,15 +40,14 @@ class OperatorTest : public OperatorBase {
float x = 0;
};
class OperatorTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
OperatorTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
OpeWithoutKernelTestProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op");
AddOutput("output", "output of test op");
AddAttr<float>("scale", "scale of cosine op")
.SetDefault(1.0)
.LargerThan(0.0);
AddAttr<float>("scale", "scale of cosine op");
AddComment("This is test op");
}
};
......@@ -52,8 +55,8 @@ class OperatorTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
} // namespace framework
} // namespace paddle
REGISTER_OP(test_operator, paddle::framework::OperatorTest,
paddle::framework::OperatorTestProtoAndCheckerMaker);
REGISTER_OP(test_operator, paddle::framework::OpWithoutKernelTest,
paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker);
TEST(OperatorBase, all) {
paddle::framework::OpDesc op_desc;
......@@ -63,18 +66,17 @@ TEST(OperatorBase, all) {
auto attr = op_desc.mutable_attrs()->Add();
attr->set_name("scale");
attr->set_type(paddle::framework::AttrType::FLOAT);
float scale = 3.14;
attr->set_f(scale);
attr->set_f(3.14);
paddle::platform::CPUDeviceContext device_context;
auto scope = std::make_shared<paddle::framework::Scope>();
paddle::framework::OperatorPtr op =
paddle::framework::OpRegistry::CreateOp(op_desc);
ASSERT_EQ(op->GetAttr<float>("scale"), scale);
scope->CreateVariable("OUT1");
ASSERT_EQ(paddle::framework::op_run_num, 0);
op->Run(scope, device_context);
std::cout << op->DebugString() << std::endl;
ASSERT_EQ(paddle::framework::op_run_num, 1);
}
namespace paddle {
......@@ -86,13 +88,13 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op");
AddOutput("output", "output of test op");
AddAttr<float>("scale", "scale of cosine op")
.SetDefault(1.0)
.LargerThan(0.0);
AddAttr<float>("scale", "scale of cosine op");
AddComment("This is test op");
}
};
static int cpu_kernel_run_num = 0;
class OpWithKernelTest : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor*>& inputs,
......@@ -102,10 +104,10 @@ class OpWithKernelTest : public OperatorWithKernel {
class CPUKernelTest : public OpKernel {
public:
void Compute(const KernelContext& context) const {
float scale = context.op_.GetAttr<float>("scale");
ASSERT_NEAR(scale, 3.14, 1e-5);
std::cout << "this is cpu kernel" << std::endl;
std::cout << context.op_.DebugString() << std::endl;
cpu_kernel_run_num++;
ASSERT_EQ((int)context.op_.inputs_.size(), 1);
ASSERT_EQ((int)context.op_.outputs_.size(), 1);
ASSERT_NEAR(context.op_.GetAttr<float>("scale"), 3.14, 1e-5);
}
};
......@@ -131,5 +133,7 @@ TEST(OpKernel, all) {
paddle::framework::OperatorPtr op =
paddle::framework::OpRegistry::CreateOp(op_desc);
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0);
op->Run(scope, cpu_device_context);
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1);
}
......@@ -32,7 +32,7 @@ __global__ void KeRowConv(real* y, const real* x, const real* w,
for (int i = tidy; i < context; i += blky) {
sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0;
}
__syncthreads();
for (int i = 0; i < numSeq; ++i) {
......@@ -144,12 +144,15 @@ __global__ void KeRowConvBwWeight(real* dw, const real* x, const real* dy,
int yoff = start + j;
// transpose
sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0;
sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ? dy[yoff * width + xoff] : 0.0;
sh_x[tidx][tidy] = (xoff < width && yoff < end) ?
x[yoff * width + xoff] : 0.0;
sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ?
dy[yoff * width + xoff] : 0.0;
__syncthreads();
if (tidy < (context - 1)) {
yoff = yoff - context + 1;
sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ? dy[yoff * width + xoff] : 0.0;
sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ?
dy[yoff * width + xoff] : 0.0;
}
__syncthreads();
......@@ -199,11 +202,13 @@ __global__ void KeRowConvBwWeight2(real* dw, const real* x, const real* dy,
int yoff = start + j;
// transpose
sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0;
sh_x[tidx][tidy] = (xoff < width && yoff < end) ?
x[yoff * width + xoff] : 0.0;
__syncthreads();
for (int t = 0; t < context; t++) {
sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start && yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0;
sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start &&
yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0;
__syncthreads();
real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx];
......@@ -239,7 +244,7 @@ __global__ void KeRowConvBwData(real* dx, const real* w, const real* dy,
for (int i = tidy; i < context; i += blky) {
sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0;
}
__syncthreads();
for (int i = 0; i < numSeq; ++i) {
......@@ -312,7 +317,7 @@ void RowConvGrad<DEVICE_TYPE_GPU>(const GpuMatrix& outG,
dim3 dimBlock(32, 32);
dim3 dimGrid(DIVUP(width, dimBlock.x), 1);
real* dw = filterG.getData();
if (contextLength <= 32) {
if (contextLength <= 32) {
KeRowConvBwWeight<32, 32, 32>
<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(dw, x, dy, starts, height, width, numSeq, contextLength);
......
......@@ -155,7 +155,8 @@ RUN apt-get update &&\
paddle version
${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_GPU_ENV}
ADD go/cmd/pserver/pserver /usr/bin/
ADD go/cmd/master/master /usr/bin/
# default command shows the paddle version and exit
CMD ["paddle", "version"]
EOF
......@@ -28,6 +28,17 @@ NewRemoteParameterUpdater::NewRemoteParameterUpdater(
newGradients_(nullptr),
pserverSpec_(pserverSpec) {}
NewRemoteParameterUpdater::NewRemoteParameterUpdater(
const OptimizationConfig &config,
const std::string pserverSpec,
const bool useEtcd)
: trainerConfig_(config),
parameterClient_(-1),
newParameters_(nullptr),
newGradients_(nullptr),
pserverSpec_(pserverSpec),
useEtcd_(useEtcd) {}
void NewRemoteParameterUpdater::init(
const std::vector<ParameterPtr> &parameters) {
ParameterUpdater::init(parameters);
......@@ -38,8 +49,13 @@ void NewRemoteParameterUpdater::init(
}
// create parameter server client.
parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(),
FLAGS_trainer_id == 0);
if (useEtcd_) {
parameterClient_ = paddle_new_etcd_pserver_client(
(char *)pserverSpec_.c_str(), FLAGS_trainer_id == 0);
} else {
parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(),
FLAGS_trainer_id == 0);
}
// init new parameter and gradient.
newParameters_ = initNewParameter(PARAMETER_VALUE);
......
......@@ -32,6 +32,9 @@ class NewRemoteParameterUpdater : public ParameterUpdater {
public:
NewRemoteParameterUpdater(const OptimizationConfig& config,
const std::string pserverSpec);
NewRemoteParameterUpdater(const OptimizationConfig& config,
const std::string pserverSpec,
const bool useEtcd);
~NewRemoteParameterUpdater() {
releaseNewParameter(newParameters_);
releaseNewParameter(newGradients_);
......@@ -111,6 +114,8 @@ protected:
paddle_parameter** newGradients_;
/// the specification of parameter server "host1:port,host1:port"
std::string pserverSpec_;
/// true if pserverSpec_ is etcd endpoint, else pserverSpec_ is pserver addr
bool useEtcd_;
};
} // namespace paddle
......@@ -22,6 +22,8 @@ import importlib
import paddle.v2.dataset
import cPickle
import glob
import cPickle as pickle
import random
__all__ = [
'DATA_HOME', 'download', 'md5file', 'split', 'cluster_files_reader',
......@@ -170,8 +172,6 @@ def convert(output_path,
name_prefix,
max_lines_to_shuffle=1000):
import recordio
import cPickle as pickle
import random
"""
Convert data from reader to recordio format files.
......@@ -201,8 +201,10 @@ def convert(output_path,
def write_data(w, lines):
random.shuffle(lines)
for i, d in enumerate(lines):
d = pickle.dumps(d, pickle.HIGHEST_PROTOCOL)
w[i % num_shards].write(d)
# FIXME(Yancey1989):
# dumps with protocol: pickle.HIGHEST_PROTOCOL
o = pickle.dumps(d)
w[i % num_shards].write(o)
w = open_writers()
lines = []
......
......@@ -212,19 +212,19 @@ def gen_pair(querylist, partial_order="full"):
for j in range(i + 1, len(querylist)):
query_right = querylist[j]
if query_left.relevance_score > query_right.relevance_score:
labels.append(1)
labels.append([1])
docpairs.append([
np.array(query_left.feature_vector),
np.array(query_right.feature_vector)
])
elif query_left.relevance_score < query_right.relevance_score:
labels.append(1)
labels.append([1])
docpairs.append([
np.array(query_right.feature_vector),
np.array(query_left.feature_vector)
])
for label, pair in zip(labels, docpairs):
yield label, pair[0], pair[1]
yield np.array(label), pair[0], pair[1]
def gen_list(querylist):
......
......@@ -10,8 +10,9 @@ class client(object):
client is a client to the master server.
"""
def __init__(self, addr, buf_size):
self.c = lib.paddle_new_master_client(addr, buf_size)
def __init__(self, etcd_endpoints, timeout, buf_size):
self.c = lib.paddle_new_etcd_master_client(etcd_endpoints, timeout,
buf_size)
def close(self):
lib.paddle_release_master_client(self.c)
......
import py_paddle.swig_paddle as swig_api
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
import paddle.trainer_config_helpers.optimizers as v1_optimizers
"""
......@@ -16,7 +17,6 @@ __all__ = [
class Optimizer(object):
def __init__(self, **kwargs):
import py_paddle.swig_paddle as swig_api
if 'batch_size' in kwargs:
del kwargs['batch_size'] # not important for python library.
......@@ -46,12 +46,12 @@ class Optimizer(object):
return swig_api.ParameterUpdater.createRemoteUpdater(
self.__opt_conf__, pass_num, use_sparse_updater)
def __create_new_remote_updater__(self, pserver_spec):
def __create_new_remote_updater__(self, pserver_spec, use_etcd):
return swig_api.ParameterUpdater.createNewRemoteUpdater(
self.__opt_conf__, pserver_spec)
self.__opt_conf__, pserver_spec, use_etcd)
def create_updater(self, is_local, num_passes, use_sparse_updater,
pserver_spec):
pserver_spec, use_etcd):
"""
create proper parameter_updater by configuration.
:param is_local: create local or remote parameter updater
......@@ -77,7 +77,7 @@ class Optimizer(object):
num_passes, use_sparse_updater)
else:
parameter_updater = self.__create_new_remote_updater__(
pserver_spec)
pserver_spec, use_etcd)
return parameter_updater
......
......@@ -45,7 +45,8 @@ class SGD(object):
update_equation,
extra_layers=None,
is_local=True,
pserver_spec=None):
pserver_spec=None,
use_etcd=True):
if not isinstance(parameters, v2_parameters.Parameters):
raise TypeError('parameters should be parameters')
......@@ -61,6 +62,7 @@ class SGD(object):
self.__topology_in_proto__ = topology.proto()
self.__is_local__ = is_local
self.__pserver_spec__ = pserver_spec
self.__use_etcd__ = use_etcd
self.__use_sparse_updater__ = self.__topology__.use_sparse_updater()
# # In local mode, disable sparse_remote_update.
......@@ -127,7 +129,7 @@ class SGD(object):
self.__parameter_updater__ = self.__optimizer__.create_updater(
self.__is_local__, num_passes, self.__use_sparse_updater__,
self.__pserver_spec__)
self.__pserver_spec__, self.__use_etcd__)
self.__parameter_updater__.init(self.__gradient_machine__)
self.__gradient_machine__.start()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册