Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3b0eaee9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3b0eaee9
编写于
2月 14, 2022
作者:
W
Wangzheee
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support preln_ernie
上级
52bbaae9
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
932 addition
and
16 deletion
+932
-16
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-0
paddle/fluid/framework/ir/preln_embedding_eltwise_layernorm_fuse_pass.cc
...amework/ir/preln_embedding_eltwise_layernorm_fuse_pass.cc
+450
-0
paddle/fluid/framework/ir/preln_embedding_eltwise_layernorm_fuse_pass.h
...ramework/ir/preln_embedding_eltwise_layernorm_fuse_pass.h
+166
-0
paddle/fluid/framework/ir/preln_skip_layernorm_fuse_pass.cc
paddle/fluid/framework/ir/preln_skip_layernorm_fuse_pass.cc
+210
-0
paddle/fluid/framework/ir/preln_skip_layernorm_fuse_pass.h
paddle/fluid/framework/ir/preln_skip_layernorm_fuse_pass.h
+86
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+18
-16
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
3b0eaee9
...
@@ -103,6 +103,8 @@ target_link_libraries(generate_pass pass_desc_proto)
...
@@ -103,6 +103,8 @@ target_link_libraries(generate_pass pass_desc_proto)
if
(
WITH_TENSORRT
)
if
(
WITH_TENSORRT
)
pass_library
(
trt_map_matmul_to_mul_pass inference
)
pass_library
(
trt_map_matmul_to_mul_pass inference
)
pass_library
(
preln_embedding_eltwise_layernorm_fuse_pass inference
)
pass_library
(
preln_skip_layernorm_fuse_pass inference
)
endif
()
endif
()
if
(
WITH_GPU OR WITH_ROCM
)
if
(
WITH_GPU OR WITH_ROCM
)
...
...
paddle/fluid/framework/ir/preln_embedding_eltwise_layernorm_fuse_pass.cc
0 → 100644
浏览文件 @
3b0eaee9
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/preln_embedding_eltwise_layernorm_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Node
;
}
// namespace ir
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
static
PDNode
*
create_emb_vars
(
PDPattern
*
pattern
,
const
std
::
string
&
name
,
const
std
::
string
&
arg
,
bool
is_persist
=
false
)
{
std
::
unordered_set
<
std
::
string
>
embedding_ops
{
"lookup_table"
,
"lookup_table_v2"
};
PDNode
*
node
=
pattern
->
NewNode
(
name
)
->
assert_is_ops_input
(
embedding_ops
,
arg
);
if
(
is_persist
)
return
node
->
assert_is_persistable_var
();
return
node
;
}
static
PDNode
*
create_emb_out_vars
(
PDPattern
*
pattern
,
const
std
::
string
&
name
,
const
std
::
string
&
arg
)
{
std
::
unordered_set
<
std
::
string
>
embedding_ops
{
"lookup_table"
,
"lookup_table_v2"
};
PDNode
*
node
=
pattern
->
NewNode
(
name
)
->
assert_is_only_output_of_ops
(
embedding_ops
)
->
assert_is_op_input
(
"elementwise_add"
,
arg
)
->
AsIntermediate
();
return
node
;
}
void
PrelnEmbedding2Eltwise1Pattern
::
operator
()()
{
auto
*
lookup_table1_x
=
create_emb_vars
(
pattern
,
lookup_table1_x_repr
(),
"Ids"
);
auto
*
lookup_table2_x
=
create_emb_vars
(
pattern
,
lookup_table2_x_repr
(),
"Ids"
);
auto
*
lookup_table1_w
=
create_emb_vars
(
pattern
,
lookup_table1_w_repr
(),
"W"
,
true
);
auto
*
lookup_table2_w
=
create_emb_vars
(
pattern
,
lookup_table2_w_repr
(),
"W"
,
true
);
std
::
unordered_set
<
std
::
string
>
embedding_ops
{
"lookup_table"
,
"lookup_table_v2"
};
auto
*
lookup_table1
=
pattern
->
NewNode
(
lookup_table1_repr
())
->
assert_is_ops
(
embedding_ops
);
auto
*
lookup_table2
=
pattern
->
NewNode
(
lookup_table2_repr
())
->
assert_is_ops
(
embedding_ops
);
auto
*
lookup_table1_out
=
create_emb_out_vars
(
pattern
,
lookup_table1_out_repr
(),
"X"
);
auto
*
lookup_table2_out
=
create_emb_out_vars
(
pattern
,
lookup_table2_out_repr
(),
"Y"
);
auto
*
eltwise_add
=
pattern
->
NewNode
(
eltwise_add_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
eltwise_add_out
=
pattern
->
NewNode
(
eltwise_add_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
);
lookup_table1
->
LinksFrom
({
lookup_table1_x
,
lookup_table1_w
})
.
LinksTo
({
lookup_table1_out
});
lookup_table2
->
LinksFrom
({
lookup_table2_x
,
lookup_table2_w
})
.
LinksTo
({
lookup_table2_out
});
eltwise_add
->
LinksFrom
({
lookup_table1_out
,
lookup_table2_out
})
.
LinksTo
({
eltwise_add_out
});
}
void
PrelnEmbedding1Eltwise1Pattern
::
operator
()()
{
auto
*
lookup_table1_x
=
create_emb_vars
(
pattern
,
lookup_table1_x_repr
(),
"Ids"
);
auto
*
lookup_table1_w
=
create_emb_vars
(
pattern
,
lookup_table1_w_repr
(),
"W"
,
true
);
std
::
unordered_set
<
std
::
string
>
embedding_ops
{
"lookup_table"
,
"lookup_table_v2"
};
auto
*
lookup_table1
=
pattern
->
NewNode
(
lookup_table1_repr
())
->
assert_is_ops
(
embedding_ops
);
auto
*
lookup_table1_out
=
create_emb_out_vars
(
pattern
,
lookup_table1_out_repr
(),
"Y"
);
auto
*
eltwise_add
=
pattern
->
NewNode
(
eltwise_add_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
eltwise_add_in
=
pattern
->
NewNode
(
eltwise_add_in_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"X"
)
->
assert_is_op_output
(
"elementwise_add"
);
auto
*
eltwise_add_out
=
pattern
->
NewNode
(
eltwise_add_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
);
lookup_table1
->
LinksFrom
({
lookup_table1_x
,
lookup_table1_w
})
.
LinksTo
({
lookup_table1_out
});
eltwise_add
->
LinksFrom
({
lookup_table1_out
,
eltwise_add_in
})
.
LinksTo
({
eltwise_add_out
});
}
void
PrelnSkipLayerNorm
::
operator
()()
{
auto
*
eltwise_add
=
pattern
->
NewNode
(
eltwise_add_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
eltwise_add_out
=
pattern
->
NewNode
(
eltwise_add_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
)
->
assert_is_op_input
(
"layer_norm"
,
"X"
)
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
auto
*
layer_norm
=
pattern
->
NewNode
(
layer_norm_repr
())
->
assert_is_op
(
"layer_norm"
);
auto
*
layer_norm_out
=
pattern
->
NewNode
(
layer_norm_out_repr
())
->
assert_is_op_output
(
"layer_norm"
,
"Y"
)
->
AsOutput
();
auto
*
layer_norm_bias_var
=
pattern
->
NewNode
(
layer_norm_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layer_norm"
,
"Bias"
);
auto
*
layer_norm_scale_var
=
pattern
->
NewNode
(
layer_norm_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layer_norm"
,
"Scale"
);
auto
*
layer_norm_mean_var
=
pattern
->
NewNode
(
layer_norm_mean_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Mean"
);
auto
*
layer_norm_variance_var
=
pattern
->
NewNode
(
layer_norm_variance_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Variance"
);
eltwise_add
->
LinksTo
({
eltwise_add_out
});
layer_norm
->
LinksFrom
({
eltwise_add_out
,
layer_norm_bias_var
,
layer_norm_scale_var
})
.
LinksTo
({
layer_norm_out
,
layer_norm_mean_var
,
layer_norm_variance_var
});
}
}
// namespace patterns
int
PrelnEmbeddingEltwiseLayerNormFusePass
::
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
/*const Scope* scope*/
)
const
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
std
::
vector
<
std
::
vector
<
std
::
pair
<
Node
*
,
Node
*>>>
start_pattern_in_nodes
;
std
::
vector
<
Node
*>
start_pattern_out_node
;
std
::
vector
<
std
::
unordered_set
<
Node
*>>
start_pattern_remove_nodes
;
// Create pattern.
patterns
::
PrelnEmbedding2Eltwise1Pattern
start_pattern
(
pattern
,
name_scope
+
"/start"
);
start_pattern
();
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1_x
,
lookup_table1_x
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table2_x
,
lookup_table2_x
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1_w
,
lookup_table1_w
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table2_w
,
lookup_table2_w
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1
,
lookup_table1
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table2
,
lookup_table2
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1_out
,
lookup_table1_out
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table2_out
,
lookup_table2_out
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_add
,
eltwise_add
,
start_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_add_out
,
eltwise_add_out
,
start_pattern
);
if
(
!
IsCompat
(
subgraph
,
graph
))
{
LOG
(
WARNING
)
<<
"Pass(PrelnEmbedding2Eltwise1Pattern) in op compat failed."
;
return
;
}
std
::
vector
<
std
::
pair
<
Node
*
,
Node
*>>
ins
;
ins
.
push_back
(
std
::
make_pair
(
lookup_table1_x
,
lookup_table1_w
));
ins
.
push_back
(
std
::
make_pair
(
lookup_table2_x
,
lookup_table2_w
));
start_pattern_in_nodes
.
push_back
(
ins
);
start_pattern_out_node
.
push_back
(
eltwise_add_out
);
std
::
unordered_set
<
Node
*>
rm_nodes
;
rm_nodes
.
insert
({
lookup_table1
,
lookup_table2
,
lookup_table1_out
,
lookup_table2_out
,
eltwise_add
,
eltwise_add_out
});
start_pattern_remove_nodes
.
push_back
(
rm_nodes
);
};
gpd
(
graph
,
handler
);
std
::
vector
<
std
::
pair
<
Node
*
,
Node
*>>
inner_pattern_ins
;
std
::
vector
<
Node
*>
inner_pattern_tmp_in
;
std
::
vector
<
Node
*>
inner_pattern_out
;
std
::
vector
<
std
::
unordered_set
<
Node
*>>
inner_pattern_remove_nodes
;
GraphPatternDetector
gpd2
;
auto
*
pattern2
=
gpd2
.
mutable_pattern
();
patterns
::
PrelnEmbedding1Eltwise1Pattern
second_pattern
(
pattern2
,
name_scope
+
"/second"
);
second_pattern
();
auto
handler2
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1_x
,
lookup_table1_x
,
second_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1_w
,
lookup_table1_w
,
second_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1
,
lookup_table1
,
second_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
lookup_table1_out
,
lookup_table1_out
,
second_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_add_in
,
eltwise_add_in
,
second_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_add
,
eltwise_add
,
second_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_add_out
,
eltwise_add_out
,
second_pattern
);
if
(
!
IsCompat
(
subgraph
,
graph
))
{
LOG
(
WARNING
)
<<
"Pass(PrelnEmbedding1Eltwise1Pattern) in op compat failed."
;
return
;
}
auto
in
=
std
::
make_pair
(
lookup_table1_x
,
lookup_table1_w
);
inner_pattern_ins
.
push_back
(
in
);
inner_pattern_tmp_in
.
push_back
(
eltwise_add_in
);
inner_pattern_out
.
push_back
(
eltwise_add_out
);
std
::
unordered_set
<
Node
*>
rm_nodes
;
rm_nodes
.
insert
({
lookup_table1
,
lookup_table1_out
,
eltwise_add
});
inner_pattern_remove_nodes
.
push_back
(
rm_nodes
);
};
gpd2
(
graph
,
handler2
);
std
::
vector
<
Node
*>
end_pattern_elt_out
;
std
::
vector
<
Node
*>
end_pattern_scales
;
std
::
vector
<
Node
*>
end_pattern_biases
;
std
::
vector
<
Node
*>
end_pattern_out
;
std
::
vector
<
Node
*>
end_patter_layernorms
;
std
::
vector
<
Node
*>
end_patter_elementwise
;
std
::
vector
<
std
::
unordered_set
<
Node
*>>
end_pattern_remove_nodes
;
GraphPatternDetector
gpd3
;
auto
*
pattern3
=
gpd3
.
mutable_pattern
();
patterns
::
PrelnSkipLayerNorm
skip_layernorm_pattern
(
pattern3
,
name_scope
+
"/third"
);
skip_layernorm_pattern
();
auto
handler3
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_add
,
eltwise_add
,
skip_layernorm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_add_out
,
eltwise_add_out
,
skip_layernorm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm
,
layer_norm
,
skip_layernorm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_out
,
layer_norm_out
,
skip_layernorm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_bias
,
layer_norm_bias
,
skip_layernorm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_scale
,
layer_norm_scale
,
skip_layernorm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_mean
,
layer_norm_mean
,
skip_layernorm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_variance
,
layer_norm_variance
,
skip_layernorm_pattern
);
if
(
!
IsCompat
(
subgraph
,
graph
))
{
LOG
(
WARNING
)
<<
"Pass(PrelnSkipLayerNorm) in op compat failed."
;
return
;
}
end_pattern_elt_out
.
push_back
(
eltwise_add_out
);
std
::
unordered_set
<
Node
*>
rm_nodes
;
rm_nodes
.
insert
({
layer_norm
,
layer_norm_mean
,
layer_norm_variance
});
end_pattern_remove_nodes
.
push_back
(
rm_nodes
);
end_pattern_biases
.
push_back
(
layer_norm_bias
);
end_pattern_scales
.
push_back
(
layer_norm_scale
);
end_pattern_out
.
push_back
(
layer_norm_out
);
end_patter_layernorms
.
push_back
(
layer_norm
);
end_patter_elementwise
.
push_back
(
eltwise_add
);
};
gpd3
(
graph
,
handler3
);
if
(
start_pattern_in_nodes
.
empty
()
||
end_pattern_elt_out
.
empty
())
{
return
0
;
}
// only reserve the subgraphs that in connected domains.
int
fusion_count
=
0
;
// fusion_id for (i, k, js)
std
::
vector
<
std
::
pair
<
size_t
,
std
::
pair
<
size_t
,
std
::
vector
<
size_t
>>>>
fusion_ids
;
for
(
size_t
i
=
0
;
i
<
start_pattern_in_nodes
.
size
();
++
i
)
{
Node
*
tmp
=
start_pattern_out_node
[
i
];
Node
*
old_tmp
=
nullptr
;
// get correct inner pattern node order.
std
::
vector
<
size_t
>
js
;
while
(
tmp
!=
old_tmp
)
{
old_tmp
=
tmp
;
for
(
size_t
j
=
0
;
j
<
inner_pattern_tmp_in
.
size
();
++
j
)
{
if
(
inner_pattern_tmp_in
[
j
]
==
tmp
)
{
tmp
=
inner_pattern_out
[
j
];
js
.
push_back
(
j
);
break
;
}
}
}
for
(
size_t
k
=
0
;
k
<
end_pattern_elt_out
.
size
();
++
k
)
{
if
(
tmp
==
end_pattern_elt_out
[
k
])
{
fusion_ids
.
push_back
(
std
::
make_pair
(
i
,
std
::
make_pair
(
k
,
js
)));
break
;
}
}
}
for
(
size_t
num
=
0
;
num
<
fusion_ids
.
size
();
++
num
)
{
int
i
=
fusion_ids
[
num
].
first
;
int
k
=
fusion_ids
[
num
].
second
.
first
;
std
::
vector
<
size_t
>
js
=
fusion_ids
[
num
].
second
.
second
;
std
::
vector
<
std
::
string
>
ids
;
std
::
vector
<
std
::
string
>
embs
;
for
(
size_t
iter
=
0
;
iter
<
start_pattern_in_nodes
[
i
].
size
();
++
iter
)
{
ids
.
push_back
(
start_pattern_in_nodes
[
i
][
iter
].
first
->
Name
());
embs
.
push_back
(
start_pattern_in_nodes
[
i
][
iter
].
second
->
Name
());
}
for
(
size_t
iter
=
0
;
iter
<
js
.
size
();
++
iter
)
{
ids
.
push_back
(
inner_pattern_ins
[
js
[
iter
]].
first
->
Name
());
embs
.
push_back
(
inner_pattern_ins
[
js
[
iter
]].
second
->
Name
());
}
OpDesc
new_op_desc
;
new_op_desc
.
SetType
(
"fused_preln_embedding_eltwise_layernorm"
);
new_op_desc
.
SetInput
(
"Ids"
,
ids
);
new_op_desc
.
SetInput
(
"Embs"
,
embs
);
new_op_desc
.
SetInput
(
"WordId"
,
{
ids
[
0
]});
new_op_desc
.
SetInput
(
"PosId"
,
{
ids
[
1
]});
if
(
ids
.
size
()
>
2
)
{
new_op_desc
.
SetInput
(
"SentId"
,
{
ids
[
2
]});
}
new_op_desc
.
SetInput
(
"WordEmbedding"
,
{
embs
[
0
]});
new_op_desc
.
SetInput
(
"PosEmbedding"
,
{
embs
[
1
]});
if
(
embs
.
size
()
>
2
)
{
new_op_desc
.
SetInput
(
"SentEmbedding"
,
{
embs
[
2
]});
}
new_op_desc
.
SetInput
(
"Bias"
,
{
end_pattern_biases
[
k
]
->
Name
()});
new_op_desc
.
SetInput
(
"Scale"
,
{
end_pattern_scales
[
k
]
->
Name
()});
new_op_desc
.
SetOutput
(
"Out_0"
,
{
end_pattern_out
[
k
]
->
Name
()});
new_op_desc
.
SetOutput
(
"Out_1"
,
{
inner_pattern_out
[
k
]
->
Name
()});
new_op_desc
.
SetAttr
(
"epsilon"
,
end_patter_layernorms
[
k
]
->
Op
()
->
GetAttr
(
"epsilon"
));
if
(
end_patter_layernorms
[
k
]
->
Op
()
->
HasAttr
(
"out_threshold"
)
&&
end_patter_elementwise
[
k
]
->
Op
()
->
HasAttr
(
"out_threshold"
))
{
new_op_desc
.
SetAttr
(
"enable_int8"
,
true
);
new_op_desc
.
SetAttr
(
"out_0_threshold"
,
end_patter_layernorms
[
k
]
->
Op
()
->
GetAttr
(
"out_threshold"
));
new_op_desc
.
SetAttr
(
"out_1_threshold"
,
end_patter_elementwise
[
k
]
->
Op
()
->
GetAttr
(
"out_threshold"
));
}
auto
*
preln_embedding_eltwise_layernorm
=
graph
->
CreateOpNode
(
&
new_op_desc
);
for
(
size_t
iter
=
0
;
iter
<
start_pattern_in_nodes
[
i
].
size
();
++
iter
)
{
IR_NODE_LINK_TO
(
start_pattern_in_nodes
[
i
][
iter
].
first
,
preln_embedding_eltwise_layernorm
);
IR_NODE_LINK_TO
(
start_pattern_in_nodes
[
i
][
iter
].
second
,
preln_embedding_eltwise_layernorm
);
}
for
(
size_t
iter
=
0
;
iter
<
js
.
size
();
++
iter
)
{
IR_NODE_LINK_TO
(
inner_pattern_ins
[
js
[
iter
]].
first
,
preln_embedding_eltwise_layernorm
);
IR_NODE_LINK_TO
(
inner_pattern_ins
[
js
[
iter
]].
second
,
preln_embedding_eltwise_layernorm
);
}
IR_NODE_LINK_TO
(
end_pattern_biases
[
k
],
preln_embedding_eltwise_layernorm
);
IR_NODE_LINK_TO
(
end_pattern_scales
[
k
],
preln_embedding_eltwise_layernorm
);
IR_NODE_LINK_TO
(
preln_embedding_eltwise_layernorm
,
end_pattern_out
[
k
]);
IR_NODE_LINK_TO
(
embedding_eltwise_layernorm
,
inner_pattern_out
[
k
]);
// Remove unneeded nodes.
std
::
unordered_set
<
const
Node
*>
marked_nodes
;
marked_nodes
.
insert
(
start_pattern_remove_nodes
[
i
].
begin
(),
start_pattern_remove_nodes
[
i
].
end
());
marked_nodes
.
insert
(
end_pattern_remove_nodes
[
k
].
begin
(),
end_pattern_remove_nodes
[
k
].
end
());
for
(
size_t
iter
=
0
;
iter
<
js
.
size
();
++
iter
)
{
marked_nodes
.
insert
(
inner_pattern_remove_nodes
[
js
[
iter
]].
begin
(),
inner_pattern_remove_nodes
[
js
[
iter
]].
end
());
}
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
++
fusion_count
;
}
return
fusion_count
;
}
PrelnEmbeddingEltwiseLayerNormFusePass
::
PrelnEmbeddingEltwiseLayerNormFusePass
()
{
AddOpCompat
(
OpCompat
(
"elementwise_add"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Y"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Out"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"axis"
)
.
End
();
AddOpCompat
(
OpCompat
(
"layer_norm"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Scale"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Bias"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Y"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Mean"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Variance"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"epsilon"
)
.
IsNumGE
(
0.0
f
)
.
IsNumLE
(
0.001
f
)
.
End
()
.
AddAttr
(
"begin_norm_axis"
)
.
IsNumGT
(
0
)
.
End
();
}
void
PrelnEmbeddingEltwiseLayerNormFusePass
::
ApplyImpl
(
Graph
*
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
);
int
fusion_count
=
PrelnEmbeddingEltwiseLayerNormFusePass
::
BuildFusion
(
graph
,
name_scope_
);
if
(
fusion_count
>
0
)
{
graph
->
Set
(
kPrelnEmbEltwiseLayernormPass
,
new
bool
(
true
));
}
AddStatis
(
fusion_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
preln_embedding_eltwise_layernorm_fuse_pass
,
paddle
::
framework
::
ir
::
PrelnEmbeddingEltwiseLayerNormFusePass
);
REGISTER_PASS_CAPABILITY
(
preln_embedding_eltwise_layernorm_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"lookup_table"
,
1
)
.
LE
(
"lookup_table_v2"
,
1
)
.
LE
(
"elementweise_add"
,
1
));
paddle/fluid/framework/ir/preln_embedding_eltwise_layernorm_fuse_pass.h
0 → 100644
浏览文件 @
3b0eaee9
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Graph
;
}
// namespace ir
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
// detect start pattern.
//
// in_var emb in_var emb
// | | | |
// lookup_table lookup_table
// | |
// lkt_var lkt_var
// \ /
// elementwise_add
// |
// elt_out_var
//
struct
PrelnEmbedding2Eltwise1Pattern
:
public
PatternBase
{
PrelnEmbedding2Eltwise1Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"Prelnembedding2_eltwise1"
)
{}
void
operator
()();
PATTERN_DECL_NODE
(
lookup_table1_x
);
PATTERN_DECL_NODE
(
lookup_table2_x
);
PATTERN_DECL_NODE
(
lookup_table1_w
);
PATTERN_DECL_NODE
(
lookup_table2_w
);
PATTERN_DECL_NODE
(
lookup_table1
);
PATTERN_DECL_NODE
(
lookup_table2
);
PATTERN_DECL_NODE
(
lookup_table1_out
);
PATTERN_DECL_NODE
(
lookup_table2_out
);
PATTERN_DECL_NODE
(
eltwise_add
);
PATTERN_DECL_NODE
(
eltwise_add_out
);
};
// detect repeats inner pattern
//
// elt_out_var in_var emb
// \ | |
// \ lookup_table
// \ |
// \ lkt_var
// \ /
// elementwise_add
// | |
// elementwise_add elt_out_var
//
struct
PrelnEmbedding1Eltwise1Pattern
:
public
PatternBase
{
PrelnEmbedding1Eltwise1Pattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"Prelnembedding1_eltwise1"
)
{}
void
operator
()();
PATTERN_DECL_NODE
(
lookup_table1_x
);
PATTERN_DECL_NODE
(
lookup_table1_w
);
PATTERN_DECL_NODE
(
lookup_table1
);
PATTERN_DECL_NODE
(
lookup_table1_out
);
PATTERN_DECL_NODE
(
eltwise_add_in
);
PATTERN_DECL_NODE
(
eltwise_add
);
PATTERN_DECL_NODE
(
eltwise_add_out
);
};
// detect end pattern
//
// elementwise_add
// | |
// | elt_out_var
// | scale | bias
// | \ | /
// elementwise_add layer_norm
//
struct
PrelnSkipLayerNorm
:
public
PatternBase
{
PrelnSkipLayerNorm
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"Prelnskip_layernorm"
)
{}
void
operator
()();
PATTERN_DECL_NODE
(
eltwise_add
);
PATTERN_DECL_NODE
(
eltwise_add_out
);
PATTERN_DECL_NODE
(
layer_norm
);
PATTERN_DECL_NODE
(
layer_norm_bias
);
PATTERN_DECL_NODE
(
layer_norm_scale
);
PATTERN_DECL_NODE
(
layer_norm_out
);
// Delete the mean and var nodes in the graph.
PATTERN_DECL_NODE
(
layer_norm_mean
);
PATTERN_DECL_NODE
(
layer_norm_variance
);
};
}
// namespace patterns
// The PrelnEmbeddingEltwiseLayerNormFusePass detect the following pattern:
//
// inputs operator output
// --------------------------------------------------------------------
// (word, weights_0) lookup_table -> word_emb
// (pos, weights_1) lookup_table -> pos_emb
// (sent, weights_2) lookup_table -> sent_emb
// (word_emb, pos_emb) elementweise_add -> elementwise_out_0
// (elemtwise_out_0, sent_emb) elementweise_add -> elementwise_out_1
// (elementwise_out_1, scale, bias) layer_norm -> layer_norm_out
//
// and then convert the corresponding subgraph to:
//
// (word, pos, sent, weights_0, weights_1, weights_2,
// scale, baias) Prelnembedding_eltwise_layernorm -> layer_norm_out +
// elementwise_add_out
//
//
// in_var emb_var in_var emb_var in_var emb_var in_var emb_var
// | | | | | | | |
// lookup_table lookup_table lookup_table ... lookup_table
// | | | |
// lkt_var lkt_var lkt_var lkt_var
// \ / | ... |
// elementwise_add | |
// \ / |
// elementwise_add |
// | |
// elt_var /
// \ /
// elementwise_add
// | |
// elementwise_add layer_norm
class
PrelnEmbeddingEltwiseLayerNormFusePass
:
public
FusePassBase
{
public:
PrelnEmbeddingEltwiseLayerNormFusePass
();
virtual
~
PrelnEmbeddingEltwiseLayerNormFusePass
()
{}
protected:
void
ApplyImpl
(
Graph
*
graph
)
const
;
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
/*const Scope* scope*/
)
const
;
const
std
::
string
name_scope_
{
"preln_embedding_eltwise_layernorm_fuse"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/preln_skip_layernorm_fuse_pass.cc
0 → 100644
浏览文件 @
3b0eaee9
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/preln_skip_layernorm_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Node
;
}
// namespace ir
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
PrelnSkipLayerNorm
:
public
PatternBase
{
PrelnSkipLayerNorm
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"preln_skip_layernorm"
)
{}
void
operator
()(
PDNode
*
x
,
PDNode
*
y
);
// declare operator node's name
PATTERN_DECL_NODE
(
fused_skipe_layernorm
);
PATTERN_DECL_NODE
(
elementwise
);
PATTERN_DECL_NODE
(
layer_norm
);
// declare variable node's name
PATTERN_DECL_NODE
(
elementwise_out
);
// (elementwise_input_x,elementwise_input_y) ->
// elementwise_out
PATTERN_DECL_NODE
(
layer_norm_bias
);
PATTERN_DECL_NODE
(
layer_norm_scale
);
PATTERN_DECL_NODE
(
layer_norm_out
);
PATTERN_DECL_NODE
(
layer_norm_mean
);
PATTERN_DECL_NODE
(
layer_norm_variance
);
};
void
*
PrelnSkipLayerNorm
::
operator
()(
PDNode
*
x
,
PDNode
*
y
)
{
// Create nodes for elementwise add op.
x
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
y
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
auto
*
elementwise
=
pattern
->
NewNode
(
elementwise_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
elementwise_out_var
=
pattern
->
NewNode
(
elementwise_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
)
->
assert_is_op_input
(
"layer_norm"
,
"X"
);
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
// Add links for elementwise_add op.
elementwise
->
LinksFrom
({
x
,
y
}).
LinksTo
({
elementwise_out_var
});
// Create nodes for layer_norm op.
auto
*
layer_norm
=
pattern
->
NewNode
(
layer_norm_repr
())
->
assert_is_op
(
"layer_norm"
);
auto
*
layer_norm_bias_var
=
pattern
->
NewNode
(
layer_norm_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layer_norm"
,
"Bias"
);
auto
*
layer_norm_scale_var
=
pattern
->
NewNode
(
layer_norm_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layer_norm"
,
"Scale"
);
auto
*
layer_norm_out_var
=
pattern
->
NewNode
(
layer_norm_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Y"
);
auto
*
layer_norm_mean_var
=
pattern
->
NewNode
(
layer_norm_mean_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Mean"
);
auto
*
layer_norm_variance_var
=
pattern
->
NewNode
(
layer_norm_variance_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Variance"
);
// Add links for layer_norm op.
layer_norm
->
LinksFrom
(
{
elementwise_out_var
,
layer_norm_bias_var
,
layer_norm_scale_var
})
.
LinksTo
(
{
layer_norm_out_var
,
layer_norm_mean_var
,
layer_norm_variance_var
});
}
}
// namespace patterns
void
PrelnSkipLayerNormFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
FusePassBase
::
Init
(
"preln_skip_layernorm_fuse"
,
graph
);
int
found_subgraph_count
=
0
;
GraphPatternDetector
gpd
;
auto
*
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_skip_layernorm_fuse/x"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"X"
)
->
assert_var_not_persistable
();
auto
*
y
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_skip_layernorm_fuse/y"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
assert_var_not_persistable
();
patterns
::
PrelnSkipLayerNorm
fused_pattern
(
gpd
.
mutable_pattern
(),
"preln_skip_layernorm_fuse"
);
fused_pattern
(
x
,
y
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
if
(
subgraph
.
count
(
x
)
<=
0
||
subgraph
.
count
(
y
)
<=
0
)
{
LOG
(
WARNING
)
<<
"The subgraph is empty."
;
return
;
}
if
(
!
IsCompat
(
subgraph
,
graph
))
{
LOG
(
WARNING
)
<<
"preln_skip_layernorm pass in op compat failed."
;
return
;
}
VLOG
(
4
)
<<
"handle PrelnSkipLayerNorm fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise
,
elementwise
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_out
,
elementwise_out
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm
,
layer_norm
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_bias
,
layer_norm_bias
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_scale
,
layer_norm_scale
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_out
,
layer_norm_out
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_mean
,
layer_norm_mean
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_variance
,
layer_norm_variance
,
fused_pattern
);
std
::
unordered_set
<
const
Node
*>
del_node_set
;
// Create an PrelnSkipLayerNorm op node
OpDesc
new_desc
;
new_desc
.
SetType
(
"preln_skip_layernorm"
);
// inputs
new_desc
.
SetInput
(
"X"
,
{
subgraph
.
at
(
x
)
->
Name
()});
new_desc
.
SetInput
(
"Y"
,
{
subgraph
.
at
(
y
)
->
Name
()});
new_desc
.
SetInput
(
"Scale"
,
{
layer_norm_scale
->
Name
()});
new_desc
.
SetInput
(
"Bias"
,
{
layer_norm_bias
->
Name
()});
if
(
elementwise
->
Op
()
->
HasAttr
(
"out_threshold"
)
&&
layer_norm
->
Op
()
->
HasAttr
(
"out_threshold"
))
{
new_desc
.
SetAttr
(
"enable_int8"
,
true
);
new_desc
.
SetAttr
(
"out_0_threshold"
,
layer_norm
->
Op
()
->
GetAttr
(
"out_threshold"
));
new_desc
.
SetAttr
(
"out_1_threshold"
,
elementwise
->
Op
()
->
GetAttr
(
"out_threshold"
));
}
// outputs
new_desc
.
SetOutput
(
"Out_0"
,
{
layer_norm_out
->
Name
()});
new_desc
.
SetOutput
(
"Out_1"
,
{
elementwise_out
->
Name
()});
// attrs
new_desc
.
SetAttr
(
"epsilon"
,
layer_norm
->
Op
()
->
GetAttr
(
"epsilon"
));
new_desc
.
SetAttr
(
"begin_norm_axis"
,
layer_norm
->
Op
()
->
GetAttr
(
"begin_norm_axis"
));
auto
fused_node
=
graph
->
CreateOpNode
(
&
new_desc
);
// OpDesc will be copied.
del_node_set
.
insert
(
elementwise
);
del_node_set
.
insert
(
layer_norm
);
del_node_set
.
insert
(
layer_norm_mean
);
del_node_set
.
insert
(
layer_norm_variance
);
GraphSafeRemoveNodes
(
graph
,
del_node_set
);
IR_NODE_LINK_TO
(
subgraph
.
at
(
x
),
fused_node
);
IR_NODE_LINK_TO
(
subgraph
.
at
(
y
),
fused_node
);
IR_NODE_LINK_TO
(
layer_norm_scale
,
fused_node
);
IR_NODE_LINK_TO
(
layer_norm_bias
,
fused_node
);
IR_NODE_LINK_TO
(
fused_node
,
layer_norm_out
);
IR_NODE_LINK_TO
(
fused_node
,
elementwise_out
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
preln_skip_layernorm_fuse_pass
,
paddle
::
framework
::
ir
::
PrelnSkipLayerNormFusePass
);
REGISTER_PASS_CAPABILITY
(
preln_skip_layernorm_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"elementwise_add"
,
1
)
.
EQ
(
"layer_norm"
,
0
));
paddle/fluid/framework/ir/preln_skip_layernorm_fuse_pass.h
0 → 100644
浏览文件 @
3b0eaee9
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// | | | |
// other_op1 other_op2 other_op1 other_op2
// | | fuse \ /
// |------elementwise_add -> skip_layernorm
// | | | |
// other_op4 layer_norm other_op4 other_op3
// |
// other_op3
class
Graph
;
class
PrelnSkipLayerNormFusePass
:
public
FusePassBase
{
public:
PrelnSkipLayerNormFusePass
()
{
AddOpCompat
(
OpCompat
(
"elementwise_add"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Y"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Out"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"axis"
)
.
IsIntIn
({
0
,
-
1
})
.
End
();
AddOpCompat
(
OpCompat
(
"layer_norm"
))
.
AddInput
(
"X"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Scale"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Bias"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Y"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Mean"
)
.
IsTensor
()
.
End
()
.
AddOutput
(
"Variance"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"epsilon"
)
.
IsNumGE
(
0.0
f
)
.
IsNumLE
(
0.001
f
)
.
End
()
.
AddAttr
(
"begin_norm_axis"
)
.
IsNumGT
(
0
)
.
End
();
}
virtual
~
PrelnSkipLayerNormFusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
3b0eaee9
...
@@ -82,22 +82,24 @@ const std::vector<std::string> kTRTSubgraphPasses({
...
@@ -82,22 +82,24 @@ const std::vector<std::string> kTRTSubgraphPasses({
"quant_conv2d_dequant_fuse_pass"
,
//
"quant_conv2d_dequant_fuse_pass"
,
//
"delete_quant_dequant_op_pass"
,
//
"delete_quant_dequant_op_pass"
,
//
"delete_quant_dequant_filter_op_pass"
,
//
"delete_quant_dequant_filter_op_pass"
,
//
// "fc_fuse_pass", //
// "fc_fuse_pass", //
"simplify_with_basic_ops_pass"
,
//
"simplify_with_basic_ops_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"preln_embedding_eltwise_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v3"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"skip_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v3"
,
//
"conv_bn_fuse_pass"
,
//
"skip_layernorm_fuse_pass"
,
//
"unsqueeze2_eltwise_fuse_pass"
,
//
"preln_skip_layernorm_fuse_pass"
,
//
"trt_squeeze2_matmul_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"trt_reshape2_matmul_fuse_pass"
,
//
"unsqueeze2_eltwise_fuse_pass"
,
//
"trt_flatten2_matmul_fuse_pass"
,
//
"trt_squeeze2_matmul_fuse_pass"
,
//
"trt_map_matmul_v2_to_mul_pass"
,
//
"trt_reshape2_matmul_fuse_pass"
,
//
"trt_map_matmul_v2_to_matmul_pass"
,
//
"trt_flatten2_matmul_fuse_pass"
,
//
"trt_map_matmul_to_mul_pass"
,
//
"trt_map_matmul_v2_to_mul_pass"
,
//
"fc_fuse_pass"
,
//
"trt_map_matmul_v2_to_matmul_pass"
,
//
"conv_elementwise_add_fuse_pass"
,
//
"trt_map_matmul_to_mul_pass"
,
//
"fc_fuse_pass"
,
//
"conv_elementwise_add_fuse_pass"
,
//
"add_support_int8_pass"
,
"add_support_int8_pass"
,
"tensorrt_subgraph_pass"
,
//
"tensorrt_subgraph_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录