Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3ae9aa93
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3ae9aa93
编写于
10月 17, 2017
作者:
T
Tao Luo
提交者:
GitHub
10月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4860 from tensor-tang/merge_grad_gtest
enable merge grad unit test
上级
f12f61d5
60b84856
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
296 addition
and
18 deletion
+296
-18
paddle/gserver/gradientmachines/NeuralNetwork.cpp
paddle/gserver/gradientmachines/NeuralNetwork.cpp
+15
-0
paddle/gserver/gradientmachines/NeuralNetwork.h
paddle/gserver/gradientmachines/NeuralNetwork.h
+3
-0
paddle/gserver/layers/MKLDNNConvLayer.cpp
paddle/gserver/layers/MKLDNNConvLayer.cpp
+5
-3
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+18
-1
paddle/gserver/layers/MKLDNNPoolLayer.cpp
paddle/gserver/layers/MKLDNNPoolLayer.cpp
+5
-3
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+4
-1
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+141
-0
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+30
-8
paddle/gserver/tests/mkldnn_branches_conv.conf
paddle/gserver/tests/mkldnn_branches_conv.conf
+56
-0
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+19
-2
未找到文件。
paddle/gserver/gradientmachines/NeuralNetwork.cpp
浏览文件 @
3ae9aa93
...
...
@@ -21,6 +21,10 @@ limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#ifdef PADDLE_USE_MKLDNN
#include "paddle/gserver/layers/MKLDNNLayer.h"
#endif
#ifndef PADDLE_MOBILE_INFERENCE
#include "MultiNetwork.h"
#include "RecurrentGradientMachine.h"
...
...
@@ -300,6 +304,17 @@ void NeuralNetwork::backward(const UpdateCallback& callback) {
}
}
void
NeuralNetwork
::
finish
()
{
#ifdef PADDLE_USE_MKLDNN
FOR_EACH_R
(
layer
,
layers_
)
{
MKLDNNLayerPtr
dnnLayer
=
std
::
dynamic_pointer_cast
<
MKLDNNLayer
>
(
*
layer
);
if
(
dnnLayer
)
{
dnnLayer
->
convertWeightsToPaddle
();
}
}
#endif
}
Argument
NeuralNetwork
::
getLayerOutput
(
const
std
::
string
&
layerName
)
{
return
getLayer
(
layerName
)
->
getOutput
();
}
...
...
paddle/gserver/gradientmachines/NeuralNetwork.h
浏览文件 @
3ae9aa93
...
...
@@ -134,6 +134,9 @@ public:
const
std
::
string
&
getName
()
const
{
return
subModelName_
;
}
/// some finish work, like convert the weight format of MKLDNNLayers
void
finish
()
override
;
protected:
/**
* The constructor of NeuralNetwork.
...
...
paddle/gserver/layers/MKLDNNConvLayer.cpp
浏览文件 @
3ae9aa93
...
...
@@ -313,6 +313,7 @@ void MKLDNNConvLayer::resetOutValue(
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be empty"
;
}
else
{
cpuOut
->
setData
(
output_
.
value
->
getData
());
cpuOutVal_
=
out
;
}
// when output is cpu device, change the mkldnn output value and make them
...
...
@@ -456,17 +457,18 @@ void MKLDNNConvLayer::resetOutGrad(
MKLDNNLayer
::
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
}
else
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
// always share the same grad data of CPU output
// then the activation can get the right grad from output_.grad
output_
.
grad
->
setData
(
cpuOut
->
getData
());
// same PrimitiveDesc with cpuInVal_
CHECK
(
cpuOutVal_
);
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
// create reorder if primitive desc does not match
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
!=
outVal_
->
getPrimitiveDesc
())
{
out
=
MKLDNNMatrix
::
create
(
output_
.
grad
,
outVal_
->
getPrimitiveDesc
());
out
=
MKLDNNMatrix
::
create
(
nullptr
,
outVal_
->
getPrimitiveDesc
());
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
);
}
else
{
// share the same data of CPU output
output_
.
grad
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
}
}
...
...
paddle/gserver/layers/MKLDNNLayer.h
浏览文件 @
3ae9aa93
...
...
@@ -46,6 +46,9 @@ protected:
// backward also need reset after reset forward handle
bool
needResetBwd_
;
// is output only mkldnn
bool
outputOnlyMKLDNN_
;
// mkldnn engine, stream and primivtives
mkldnn
::
engine
engine_
;
std
::
shared_ptr
<
MKLDNNStream
>
stream_
;
...
...
@@ -141,6 +144,9 @@ public:
updateInputData
();
}
if
(
!
outputOnlyMKLDNN_
)
{
clearGrads
();
}
stream_
->
submit
(
pipelineFwd_
);
}
...
...
@@ -389,7 +395,8 @@ protected:
CHECK_EQ
(
outputOtherDevice_
[
i
].
deviceId
,
CPU_DEVICE
)
<<
"Only support other device is CPU yet"
;
}
return
outputOtherDevice_
.
size
()
==
0
;
outputOnlyMKLDNN_
=
outputOtherDevice_
.
size
()
==
0
;
return
outputOnlyMKLDNN_
;
}
/**
...
...
@@ -398,6 +405,16 @@ protected:
void
setDevice
(
int
id
)
{
deviceId_
=
id
;
}
private:
/**
* clear all grad
*/
void
clearGrads
()
{
output_
.
grad
->
zeroMem
();
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
outputOtherDevice_
[
i
].
grad
->
zeroMem
();
}
}
/**
* Set deviceId of the params used in this layer.
*/
...
...
paddle/gserver/layers/MKLDNNPoolLayer.cpp
浏览文件 @
3ae9aa93
...
...
@@ -146,6 +146,7 @@ void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be emptry"
;
}
else
{
cpuOut
->
setData
(
output_
.
value
->
getData
());
cpuOutVal_
=
out
;
}
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
cpuOutVal_
);
...
...
@@ -213,15 +214,16 @@ void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
MKLDNNLayer
::
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
}
else
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
// always share the same grad data of CPU output
// then the activation can get the right grad from output_.grad
output_
.
grad
->
setData
(
cpuOut
->
getData
());
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
},
format
::
nchw
,
engine_
);
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
!=
outVal_
->
getPrimitiveDesc
())
{
out
=
MKLDNNMatrix
::
create
(
output_
.
grad
,
outVal_
->
getPrimitiveDesc
());
out
=
MKLDNNMatrix
::
create
(
nullptr
,
outVal_
->
getPrimitiveDesc
());
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
)
<<
"should not be emptry"
;
}
else
{
// share the same data of CPU output
output_
.
grad
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
}
}
...
...
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
3ae9aa93
...
...
@@ -26,7 +26,10 @@ if(WITH_MKLDNN)
test_MKLDNN.cpp
MKLDNNTester.cpp
LayerGradUtil.cpp
)
add_test
(
NAME test_MKLDNN COMMAND test_MKLDNN
)
add_test
(
NAME test_MKLDNN
COMMAND .set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python
${
CMAKE_CURRENT_BINARY_DIR
}
/test_MKLDNN
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle
)
endif
()
################ test_CRFLayerGrad ####################
...
...
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
3ae9aa93
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
#include "paddle/trainer/Trainer.h"
namespace
paddle
{
...
...
@@ -315,6 +316,7 @@ void MKLDNNTester::runOnce() {
auto
&
value
=
para
->
getBuf
(
PARAMETER_VALUE
);
real
lr
=
1e-3
;
value
->
add
(
*
grad
,
lr
);
grad
->
zeroMem
();
};
randomTopDiffs
();
dnnLayer_
->
backward
(
updateCallback
);
...
...
@@ -411,4 +413,143 @@ void MKLDNNTester::run(const TestConfig& dnn,
}
}
void
MKLDNNTester
::
initArgument
(
DataIn
&
data
,
const
std
::
string
&
configPath
,
const
size_t
iter
)
{
TrainerConfigHelper
config
(
configPath
);
size_t
batchSize
=
config
.
getOptConfig
().
batch_size
();
data
.
inArgs
.
resize
(
iter
);
data
.
outGrads
.
resize
(
iter
);
data
.
paraValues
.
clear
();
for
(
const
auto
&
layer_name
:
config
.
getModelConfig
().
input_layer_names
())
{
auto
layer_config
=
std
::
find_if
(
config
.
getModelConfig
().
layers
().
begin
(),
config
.
getModelConfig
().
layers
().
end
(),
[
=
](
const
LayerConfig
&
layer_config
)
{
return
layer_config
.
name
()
==
layer_name
;
});
CHECK
(
layer_config
!=
config
.
getModelConfig
().
layers
().
end
());
size_t
layerSize
=
layer_config
->
size
();
for
(
size_t
i
=
0
;
i
<
iter
;
++
i
)
{
Argument
arg
;
arg
.
value
=
Matrix
::
create
(
batchSize
,
layerSize
,
false
,
false
);
arg
.
grad
=
Matrix
::
create
(
batchSize
,
layerSize
,
false
,
false
);
arg
.
value
->
randomizeUniform
();
arg
.
value
->
add
(
-
0.5
);
arg
.
value
->
sigmoid
(
*
arg
.
value
);
arg
.
grad
->
zeroMem
();
arg
.
ids
=
VectorT
<
int
>::
create
(
batchSize
,
false
);
arg
.
ids
->
rand
(
layerSize
);
generateSequenceStartPositions
(
batchSize
,
arg
.
sequenceStartPositions
);
data
.
inArgs
[
i
].
push_back
(
arg
);
}
}
for
(
const
auto
&
layer_name
:
config
.
getModelConfig
().
output_layer_names
())
{
auto
layer_config
=
std
::
find_if
(
config
.
getModelConfig
().
layers
().
begin
(),
config
.
getModelConfig
().
layers
().
end
(),
[
=
](
const
LayerConfig
&
layer_config
)
{
return
layer_config
.
name
()
==
layer_name
;
});
CHECK
(
layer_config
!=
config
.
getModelConfig
().
layers
().
end
());
size_t
layerSize
=
layer_config
->
size
();
for
(
size_t
i
=
0
;
i
<
iter
;
++
i
)
{
MatrixPtr
grad
=
Matrix
::
create
(
batchSize
,
layerSize
,
false
,
false
);
grad
->
randomizeUniform
();
data
.
outGrads
[
i
].
push_back
(
grad
);
}
}
for
(
const
auto
&
para_config
:
config
.
getModelConfig
().
parameters
())
{
VectorPtr
value
=
Vector
::
create
(
para_config
.
size
(),
false
);
value
->
randnorm
(
0
,
2
);
data
.
paraValues
.
push_back
(
value
);
}
}
void
MKLDNNTester
::
getOutResult
(
const
std
::
string
&
configPath
,
DataIn
&
in
,
DataOut
&
out
,
bool
use_mkldnn
,
size_t
iter
)
{
FLAGS_use_gpu
=
false
;
FLAGS_use_mkldnn
=
use_mkldnn
;
*
ThreadLocalRand
::
getSeed
()
=
1
;
srand
(
1
);
Trainer
trainer
;
auto
config
=
std
::
make_shared
<
TrainerConfigHelper
>
(
configPath
);
trainer
.
init
(
config
,
false
);
auto
gradientMachine
=
trainer
.
getGradientMachine
();
std
::
vector
<
ParameterPtr
>
parameters
=
gradientMachine
->
getParameters
();
for
(
size_t
i
=
0
;
i
<
in
.
paraValues
.
size
();
i
++
)
{
parameters
[
i
]
->
getBuf
(
PARAMETER_VALUE
)
->
copyFrom
(
*
in
.
paraValues
[
i
]);
}
UpdateCallback
simpleUpdate
=
[](
Parameter
*
para
)
{
auto
&
grad
=
para
->
getBuf
(
PARAMETER_GRADIENT
);
auto
&
value
=
para
->
getBuf
(
PARAMETER_VALUE
);
real
lr
=
1e-2
;
value
->
add
(
*
grad
,
lr
);
grad
->
zeroMem
();
};
vector
<
Argument
>
outArgs
;
gradientMachine
->
start
();
out
.
outValues
.
clear
();
out
.
paraValues
.
clear
();
for
(
size_t
i
=
0
;
i
<
iter
;
++
i
)
{
VLOG
(
MKLDNN_TESTS
)
<<
"runing iteration "
<<
i
;
gradientMachine
->
forward
(
in
.
inArgs
[
i
],
&
outArgs
,
PASS_TRAIN
);
// save forward result
for
(
size_t
k
=
0
;
k
<
outArgs
.
size
();
k
++
)
{
MatrixPtr
value
=
Matrix
::
create
(
outArgs
[
k
].
value
->
getHeight
(),
outArgs
[
k
].
value
->
getWidth
(),
false
,
false
);
value
->
copyFrom
(
*
outArgs
[
k
].
value
);
out
.
outValues
.
push_back
(
value
);
}
// random backward input
for
(
size_t
k
=
0
;
k
<
outArgs
.
size
();
k
++
)
{
outArgs
[
k
].
grad
->
copyFrom
(
*
in
.
outGrads
[
i
][
k
]);
}
gradientMachine
->
backward
(
simpleUpdate
);
}
gradientMachine
->
finish
();
// save param value
for
(
size_t
i
=
0
;
i
<
in
.
paraValues
.
size
();
i
++
)
{
VectorPtr
val
=
Vector
::
create
(
parameters
[
i
]
->
getBuf
(
PARAMETER_VALUE
)
->
getSize
(),
false
);
val
->
copyFrom
(
*
parameters
[
i
]
->
getBuf
(
PARAMETER_VALUE
));
out
.
paraValues
.
push_back
(
val
);
}
}
void
MKLDNNTester
::
compareResult
(
DataOut
&
ref
,
DataOut
&
dnn
,
float
eps
)
{
CHECK_EQ
(
ref
.
outValues
.
size
(),
dnn
.
outValues
.
size
());
CHECK_EQ
(
ref
.
paraValues
.
size
(),
dnn
.
paraValues
.
size
());
for
(
size_t
i
=
0
;
i
<
ref
.
outValues
.
size
();
i
++
)
{
EXPECT_LE
(
fabs
(
compareMatrix
(
ref
.
outValues
[
i
],
dnn
.
outValues
[
i
])),
eps
);
}
for
(
size_t
i
=
0
;
i
<
ref
.
paraValues
.
size
();
i
++
)
{
EXPECT_LE
(
fabs
(
compareVector
(
ref
.
paraValues
[
i
],
dnn
.
paraValues
[
i
])),
eps
);
}
}
void
MKLDNNTester
::
runBranchesTest
(
const
std
::
string
&
configPath
,
size_t
iter
,
float
eps
)
{
DataIn
in
;
initArgument
(
in
,
configPath
,
iter
);
DataOut
outCpu
,
outDnn
;
getOutResult
(
configPath
,
in
,
outCpu
,
false
,
iter
);
getOutResult
(
configPath
,
in
,
outDnn
,
true
,
iter
);
compareResult
(
outCpu
,
outDnn
,
eps
);
}
}
// namespace paddle
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
3ae9aa93
...
...
@@ -33,6 +33,17 @@ class MKLDNNTester {
NUM
=
2
,
// Number of total
};
struct
DataIn
{
std
::
vector
<
std
::
vector
<
Argument
>>
inArgs
;
std
::
vector
<
std
::
vector
<
MatrixPtr
>>
outGrads
;
std
::
vector
<
VectorPtr
>
paraValues
;
};
struct
DataOut
{
std
::
vector
<
MatrixPtr
>
outValues
;
std
::
vector
<
VectorPtr
>
paraValues
;
};
protected:
std
::
vector
<
TestConfig
>
configs_
;
vector
<
string
>
layerNames_
;
...
...
@@ -74,7 +85,17 @@ public:
float
epsilon
=
1e-4
,
bool
log
=
false
,
int
level
=
MKLDNN_ALL
);
void
setLogLevel
(
int
lvl
)
{
lvl_
=
lvl
;
}
static
void
runBranchesTest
(
const
std
::
string
&
configPath
,
size_t
iter
=
3
,
float
eps
=
1e-4
);
static
void
initArgument
(
DataIn
&
data
,
const
std
::
string
&
configPath
,
size_t
iter
=
3
);
static
void
getOutResult
(
const
std
::
string
&
configPath
,
DataIn
&
in
,
DataOut
&
out
,
bool
use_mkldnn
,
size_t
iter
=
3
);
private:
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
...
...
@@ -101,8 +122,9 @@ private:
void
saveWgt
(
const
vector
<
ParameterPtr
>&
from
,
vector
<
VectorPtr
>&
to
);
void
restoreWgt
(
const
vector
<
VectorPtr
>&
from
,
vector
<
ParameterPtr
>&
to
);
double
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
);
double
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
);
static
double
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
);
static
double
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
);
static
void
compareResult
(
DataOut
&
ref
,
DataOut
&
dnn
,
float
eps
=
1e-4
);
/**
* Get delta percent
...
...
@@ -111,11 +133,11 @@ private:
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should be smaller than eps when passing.
*/
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
size_t
len
,
const
float
failRate
=
1e-3
,
const
float
thres
=
0.1
);
static
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
size_t
len
,
const
float
failRate
=
1e-3
,
const
float
thres
=
0.1
);
};
}
// namespace paddle
paddle/gserver/tests/mkldnn_branches_conv.conf
0 → 100644
浏览文件 @
3ae9aa93
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_conv
(
input
,
group_name
):
out1
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv1'
,
filter_size
=
1
,
num_filters
=
channels
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
out2
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv2'
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
conv
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
a1
,
a2
=
two_conv
(
input
=
conv
,
group_name
=
'a'
)
concat
=
concat_layer
(
input
=[
a1
,
a2
])
b1
,
b2
=
two_conv
(
input
=
conv
,
group_name
=
'b'
)
addto
=
addto_layer
(
input
=[
b1
,
b2
])
outputs
([
concat
,
addto
])
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
3ae9aa93
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/utils/PythonUtil.h>
#include <string>
#include <vector>
#include "MKLDNNTester.h"
...
...
@@ -40,12 +41,13 @@ DECLARE_bool(use_mkldnn);
struct
testFcDesc
{
int
bs
;
int
ic
;
int
oc
;
int
ih
,
iw
;
// oh == ow == 1
int
oc
;
};
static
void
getMKLDNNFcConfig
(
TestConfig
&
cfg
,
const
testFcDesc
&
pm
)
{
cfg
.
layerConfig
.
set_type
(
"mkldnn_fc"
);
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
);
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
...
...
@@ -86,6 +88,7 @@ struct testConvDesc {
static
void
getMKLDNNConvConfig
(
TestConfig
&
cfg
,
const
testConvDesc
&
pm
)
{
cfg
.
layerConfig
.
set_type
(
"mkldnn_conv"
);
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
cfg
.
layerConfig
.
set_num_filters
(
pm
.
oc
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
*
pm
.
oh
*
pm
.
ow
);
cfg
.
layerConfig
.
set_shared_biases
(
true
);
...
...
@@ -158,6 +161,7 @@ struct testPoolDesc {
static
void
getMKLDNNPoolConfig
(
TestConfig
&
cfg
,
const
testPoolDesc
&
pm
)
{
cfg
.
layerConfig
.
set_type
(
"mkldnn_pool"
);
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
cfg
.
layerConfig
.
set_size
(
pm
.
ic
*
pm
.
oh
*
pm
.
ow
);
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
...
...
@@ -244,13 +248,26 @@ TEST(MKLDNNActivation, Activations) {
}
}
// TODO(TJ): add branch test
DECLARE_string
(
config_args
);
TEST
(
MKLDNNLayer
,
branches
)
{
std
::
vector
<
std
::
string
>
cases
=
{
"conv"
};
for
(
auto
name
:
cases
)
{
std
::
string
config
=
"./gserver/tests/mkldnn_branches_"
+
name
+
".conf"
;
for
(
auto
channels
:
{
2
,
32
})
{
std
::
ostringstream
oss
;
oss
<<
"channels="
<<
channels
;
FLAGS_config_args
=
oss
.
str
();
MKLDNNTester
::
runBranchesTest
(
config
);
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
FLAGS_use_gpu
=
false
;
FLAGS_use_mkldnn
=
true
;
initMain
(
argc
,
argv
);
initPython
(
argc
,
argv
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
return
RUN_ALL_TESTS
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录