Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3ae14242
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3ae14242
编写于
11月 07, 2017
作者:
P
peterzhang2029
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update for mini-batch
上级
611ee68b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
279 addition
and
124 deletion
+279
-124
paddle/operators/bilinear_tensor_product_op.cc
paddle/operators/bilinear_tensor_product_op.cc
+42
-36
paddle/operators/bilinear_tensor_product_op.cu
paddle/operators/bilinear_tensor_product_op.cu
+77
-2
paddle/operators/bilinear_tensor_product_op.h
paddle/operators/bilinear_tensor_product_op.h
+89
-76
python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py
...dle/v2/framework/tests/test_bilinear_tensor_product_op.py
+71
-10
未找到文件。
paddle/operators/bilinear_tensor_product_op.cc
浏览文件 @
3ae14242
...
...
@@ -34,8 +34,8 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel {
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
1
,
"The input X must be a vect
or."
);
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
1
,
"The input Y must be a vect
or."
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"The input X must be a 2D Tens
or."
);
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
2
,
"The input Y must be a 2D Tens
or."
);
PADDLE_ENFORCE_EQ
(
weight_dims
.
size
(),
3
,
"The input Weight must be a 3D tensor."
);
PADDLE_ENFORCE_GT
(
weight_dims
[
0
],
0
,
...
...
@@ -44,24 +44,29 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel {
"The second dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE_GT
(
weight_dims
[
2
],
0
,
"The third dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
weight_dims
[
1
],
"The dimension of X must be equal with the second "
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
y_dims
[
0
],
"The first dimension(batch_size) of X must be "
"equal with the first dimension of the Y."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
weight_dims
[
1
],
"The second dimension of X must be equal with the second "
"dimension of the Weight."
);
PADDLE_ENFORCE_EQ
(
y_dims
[
0
],
weight_dims
[
2
],
"The dimension of Y must be equal with the third "
PADDLE_ENFORCE_EQ
(
y_dims
[
1
],
weight_dims
[
2
],
"The
second
dimension of Y must be equal with the third "
"dimension of the Weight."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
1
,
"The input Bias must be a vector."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
weight_dims
[
0
],
"The dimension of Bias must be equal with the first "
"dimension of the Weight."
);
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
2
,
"The input Bias must have 2 dimensions."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
1
,
"The first dimention of input Bias must be 1."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
1
],
weight_dims
[
0
],
"The second dimension of Bias must be equal with the "
"first dimension of the Weight."
);
}
ctx
->
SetOutputDim
(
"Out"
,
{
weight_dims
[
0
]});
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
weight_dims
[
0
]});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -70,19 +75,19 @@ class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker {
BilinearTensorProductOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of tensor op"
);
AddInput
(
"Y"
,
"The second input of tensor op"
);
AddInput
(
"Weight"
,
"The input weight of tensor op"
);
AddInput
(
"Bias"
,
"The input bias of tensor op"
);
AddOutput
(
"Out"
,
"The output of tensor op"
);
AddInput
(
"X"
,
"The first input of BilinearTensorProduct op"
);
AddInput
(
"Y"
,
"The second input of BilinearTensorProduct op"
);
AddInput
(
"Weight"
,
"The input weight of BilinearTensorProduct op"
);
AddInput
(
"Bias"
,
"The input bias of BilinearTensorProduct op"
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"The output of BilinearTensorProduct op"
);
AddComment
(
R"DOC(
Bilinear Tensor Product operator.
Given input X and Y, a 3D tensor weight, and bias. Each
entry of the output is
computed by one slice i = 1, . . . , k of the tensor: Out_i = X*W_i*Y + Bias_i .
Given input X and Y, a 3D tensor weight, and bias. Each
column of the
output is computed by one slice i = 1, . . . , k of the tensor:
The equation of this operator is:
Out = \sum_{i} X*W_i*Y + Bias
M = (X W_i) \cdot Y
Out_i = \sum_i {M_i} + Bias_i
)DOC"
);
}
...
...
@@ -104,19 +109,20 @@ class BilinearTensorProductOpGrad : public framework::OperatorWithKernel {
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
out_dims
.
size
(),
1
,
"The Out@GRAD must be a vect
or."
);
PADDLE_ENFORCE_EQ
(
out_dims
.
size
(),
2
,
"The Out@GRAD must be a 2D Tens
or."
);
PADDLE_ENFORCE_EQ
(
weight_dims
[
0
],
out_dims
[
0
],
"The dimension of Out@GRAD must be equal with the third dimension of "
"the Weight."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
x_dims
[
0
],
out_dims
[
0
],
"The first dimension(batch_size) of Out@GRAD must be equal with "
"the first dimension of the X."
);
PADDLE_ENFORCE_EQ
(
weight_dims
[
0
],
out_dims
[
1
],
"The second dimension of Out@GRAD must be equal with "
"the third dimension of the Weight."
);
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
1
,
"Input Bias must be a vector."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
out_dims
[
0
],
"The dimension of Bias must be equal with the Out@GRAD "
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
1
],
out_dims
[
1
],
"The second dimension of Bias must be equal with "
"the second dimension of the Out@GRAD."
);
auto
bias_grad_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
ctx
->
SetOutputDim
(
bias_grad_name
,
bias_dims
);
...
...
@@ -150,4 +156,4 @@ REGISTER_OP_CPU_KERNEL(
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
\ No newline at end of file
paddle/operators/bilinear_tensor_product_op.cu
浏览文件 @
3ae14242
...
...
@@ -15,10 +15,85 @@
#define EIGEN_USE_GPU
#include "paddle/operators/bilinear_tensor_product_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
Place
,
typename
T
>
class
BilinearTensorProductCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
cpu_place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
// Copy the output to cpu.
Tensor
output_cpu
;
output_cpu
.
CopyFrom
(
*
out
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
*
output_cpu_ptr
=
output_cpu
.
data
<
T
>
();
auto
output_cpu_mat
=
EigenMatrix
<
T
>::
From
(
output_cpu
);
// Create the temporary variables.
Tensor
left_mul
;
left_mul
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
weight_dims
[
2
]}),
ctx
.
GetPlace
());
auto
left_mul_mat
=
EigenMatrix
<
T
>::
From
(
left_mul
);
Tensor
output_col
;
output_col
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
}),
ctx
.
GetPlace
());
auto
output_col_vec
=
EigenVector
<
T
>::
From
(
output_col
);
for
(
size_t
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
weight_dims
[
2
],
weight_dims
[
1
],
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul
.
data
<
T
>
());
output_col_vec
.
device
(
place
)
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
// Copy the output_col to cpu.
Tensor
output_col_cpu
;
output_col_cpu
.
CopyFrom
(
output_col
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
*
output_col_ptr
=
output_col_cpu
.
data
<
T
>
();
for
(
size_t
j
=
0
;
j
<
batch_size
;
++
j
)
{
output_cpu_ptr
[
i
+
j
*
weight_dims
[
0
]]
=
output_col_ptr
[
j
];
}
}
if
(
bias
)
{
// Copy the bias to cpu.
Tensor
bias_cpu
;
bias_cpu
.
CopyFrom
(
*
bias
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
bias_cpu
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_cpu_mat
.
device
(
cpu_place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_cpu_mat
;
}
// Copy the output to gpu.
out
->
CopyFrom
(
output_cpu
,
platform
::
GPUPlace
(),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
bilinear_tensor_product
,
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
BilinearTensorProduct
CUDA
Kernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
\ No newline at end of file
paddle/operators/bilinear_tensor_product_op.h
浏览文件 @
3ae14242
...
...
@@ -14,15 +14,22 @@
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/transform.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
platform
::
Transform
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
BilinearTensorProductKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -35,43 +42,45 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
output_mat
=
EigenMatrix
<
T
>::
From
(
*
out
);
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
Tensor
left_mul_vec
;
left_mul_vec
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
2
]}),
ctx
.
GetPlace
());
if
(
bias
)
{
out
->
CopyFrom
(
*
bias
,
ctx
.
GetPlace
(),
ctx
.
device_context
());
}
for
(
int
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
// Create the temporary variables.
Tensor
left_mul
;
left_mul
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
weight_dims
[
2
]}),
ctx
.
GetPlace
());
auto
left_mul_mat
=
EigenMatrix
<
T
>::
From
(
left_mul
);
Tensor
output_col
;
output_col
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
0
]}),
ctx
.
GetPlace
());
auto
output_col_vec
=
EigenVector
<
T
>::
From
(
output_col
);
for
(
size_t
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
1
,
weight_dims
[
2
],
weight_dims
[
1
],
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul_vec
.
data
<
T
>
());
if
(
bias
)
{
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
1
,
1
,
weight_dims
[
2
],
1
,
left_mul_vec
.
data
<
T
>
(),
y
->
data
<
T
>
(),
1
,
&
(
out
->
data
<
T
>
()[
i
]));
}
else
{
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
1
,
1
,
weight_dims
[
2
],
1
,
left_mul_vec
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
&
(
out
->
data
<
T
>
()[
i
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
weight_dims
[
2
],
weight_dims
[
1
],
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul
.
data
<
T
>
());
output_col_vec
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
for
(
size_t
j
=
0
;
j
<
batch_size
;
++
j
)
{
output_mat
(
j
,
i
)
=
output_col_vec
(
j
);
}
}
if
(
bias
)
{
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
*
bias
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_mat
;
}
else
{
output_mat
.
device
(
place
)
=
output_mat
;
}
}
};
template
<
typename
T
>
class
ScaleFunctor
{
public:
explicit
ScaleFunctor
(
const
T
*
scale
)
:
scale_
(
scale
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
return
x
*
(
*
scale_
);
}
private:
const
T
*
scale_
;
};
template
<
typename
Place
,
typename
T
>
class
BilinearTensorProductGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -84,66 +93,65 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
Tensor
*
d_weight
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
Tensor
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
Tensor
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_out_ptr
=
d_out
->
data
<
T
>
();
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
// Get the first matrix of Weight.
Tensor
weight_mat_0
=
weight
->
Slice
(
0
,
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
auto
x_mat
=
EigenMatrix
<
T
>::
From
(
*
x
);
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
d_out_mat
=
EigenMatrix
<
T
>::
From
(
*
d_out
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
// Create the intermediate variable for gradient.
int
numel_x
=
x
->
numel
();
int
numel_y
=
y
->
numel
();
const
T
*
x_ptr
=
x
->
data
<
T
>
();
const
T
*
y_ptr
=
y
->
data
<
T
>
();
// Create the temporary variables for gradient.
Tensor
x_scale
;
T
*
x_scale_ptr
=
x_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
1
]}),
ctx
.
GetPlace
());
x_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
weight_dims
[
1
]}),
ctx
.
GetPlace
());
auto
x_scale_mat
=
EigenMatrix
<
T
>::
From
(
x_scale
);
Tensor
y_scale
;
T
*
y_scale_ptr
=
y_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
2
]}),
ctx
.
GetPlace
());
Transform
<
Place
>
trans
;
y_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
weight_dims
[
2
]}),
ctx
.
GetPlace
());
auto
y_scale_mat
=
EigenMatrix
<
T
>::
From
(
y_scale
);
math
::
SetConstant
<
Place
,
T
>
set_zero
;
//
Caculate the gradient of X according to the first matrix of Weigh
t.
//
Set X@Grad be zero at firs
t.
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
trans
(
ctx
.
device_context
(),
y_ptr
,
y_ptr
+
numel_y
,
y_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
0
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasTrans
,
1
,
weight_dims
[
1
],
weight_dims
[
2
],
1
,
y_scale
.
data
<
T
>
(),
weight_mat_0
.
data
<
T
>
(),
0
,
d_x
->
data
<
T
>
());
set_zero
(
ctx
.
device_context
(),
d_x
,
static_cast
<
T
>
(
0
));
}
//
Caculate the gradient of Y according to the first matrix of Weigh
t.
//
Set Y@Grad be zero at firs
t.
if
(
d_y
)
{
d_y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
trans
(
ctx
.
device_context
(),
x_ptr
,
x_ptr
+
numel_x
,
x_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
0
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasTrans
,
CblasNoTrans
,
weight_dims
[
2
],
1
,
weight_dims
[
1
],
1
,
weight_mat_0
.
data
<
T
>
(),
x_scale
.
data
<
T
>
(),
0
,
d_y
->
data
<
T
>
());
set_zero
(
ctx
.
device_context
(),
d_y
,
static_cast
<
T
>
(
0
));
}
// Caculate the
gradient of X and Y completly
.
// Caculate the
X@Grad and Y@Grad
.
if
(
d_x
||
d_y
)
{
for
(
int
i
=
1
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
Eigen
::
DSizes
<
int
,
2
>
bcast_for_x
(
1
,
weight_dims
[
2
]);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_y
(
1
,
weight_dims
[
1
]);
for
(
int
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
weight_i
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
auto
output_vec
=
d_out_mat
.
chip
(
i
,
1
);
if
(
d_x
)
{
trans
(
ctx
.
device_context
(),
y_ptr
,
y_ptr
+
numel_y
,
y_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
i
]));
y_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_x
)
*
y_mat
;
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasTrans
,
1
,
weight_dims
[
1
],
weight_dims
[
2
],
1
,
y_scale
.
data
<
T
>
(),
weight_
mat
.
data
<
T
>
(),
1
,
batch_size
,
weight_dims
[
1
],
weight_dims
[
2
],
1
,
y_scale
.
data
<
T
>
(),
weight_
i
.
data
<
T
>
(),
1
,
d_x
->
data
<
T
>
());
}
if
(
d_y
)
{
trans
(
ctx
.
device_context
(),
x_ptr
,
x_ptr
+
numel_x
,
x_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
i
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasTrans
,
CblasNoTrans
,
weight_dims
[
2
],
1
,
weight_dims
[
1
],
1
,
weight_mat
.
data
<
T
>
(),
x_scale
.
data
<
T
>
(),
1
,
x_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_y
)
*
x_mat
;
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
weight_dims
[
2
],
weight_dims
[
1
],
1
,
x_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_y
->
data
<
T
>
());
}
}
...
...
@@ -152,22 +160,27 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Caculate the gradient of Weight.
if
(
d_weight
)
{
d_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Eigen
::
DSizes
<
int
,
2
>
bcast_for_weight
(
1
,
weight_dims
[
1
]);
for
(
int
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
d_weight_
mat
=
d_weight
->
Slice
(
i
,
i
+
1
).
Resize
(
Tensor
d_weight_
i
=
d_weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
trans
(
ctx
.
device_context
(),
x_ptr
,
x_ptr
+
numel_x
,
x_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
i
]));
auto
output_vec
=
d_out_mat
.
chip
(
i
,
1
);
x_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_weight
)
*
x_mat
;
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasTrans
,
CblasNoTrans
,
weight_dims
[
1
],
weight_dims
[
2
],
1
,
1
,
weight_dims
[
1
],
weight_dims
[
2
],
batch_size
,
1
,
x_scale
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
d_weight_
mat
.
data
<
T
>
());
d_weight_
i
.
data
<
T
>
());
}
}
// Caculate the gradient of Bias.
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
CopyFrom
(
*
d_out
,
ctx
.
GetPlace
(),
ctx
.
device_context
());
auto
d_bias_mat
=
EigenMatrix
<
T
>::
From
(
*
d_bias
);
d_bias_mat
.
device
(
place
)
=
d_out_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
));
}
}
};
...
...
python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py
浏览文件 @
3ae14242
...
...
@@ -6,24 +6,85 @@ from op_test import OpTest
class
TestBilinearTensorProductOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"bilinear_tensor_product"
batch_size
=
6
size0
=
3
size1
=
4
size2
=
5
a
=
np
.
random
.
random
((
batch_size
,
size0
)).
astype
(
"float32"
)
b
=
np
.
random
.
random
((
batch_size
,
size1
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
size2
,
size0
,
size1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
random
((
1
,
size2
)).
astype
(
"float32"
)
output
=
np
.
zeros
((
batch_size
,
size2
)).
astype
(
"float32"
)
for
i
in
range
(
size2
):
w_i
=
w
[
i
,
:,
:]
output
[:,
i
]
=
np
.
sum
(
np
.
matmul
(
a
,
w_i
)
*
b
,
axis
=
1
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
3
).
astype
(
"float32"
)
,
'Y'
:
np
.
random
.
random
(
4
).
astype
(
"float32"
)
,
'Weight'
:
np
.
random
.
random
((
5
,
3
,
4
)).
astype
(
"float32"
)
,
'Bias'
:
np
.
random
.
random
(
5
).
astype
(
"float32"
)
'X'
:
a
,
'Y'
:
b
,
'Weight'
:
w
,
'Bias'
:
bias
,
}
self
.
outputs
=
{
'Out'
:
np
.
matmul
(
np
.
matmul
(
self
.
inputs
[
'Weight'
],
self
.
inputs
[
'Y'
]),
self
.
inputs
[
'X'
])
+
self
.
inputs
[
'Bias'
]
self
.
outputs
=
{
'Out'
:
output
+
bias
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
,
'Weight'
,
'Bias'
],
'Out'
)
class
TestBilinearTensorProductOp2
(
TestBilinearTensorProductOp
):
def
setUp
(
self
):
self
.
op_type
=
"bilinear_tensor_product"
batch_size
=
1
size0
=
1
size1
=
1
size2
=
1
a
=
np
.
random
.
random
((
batch_size
,
size0
)).
astype
(
"float32"
)
b
=
np
.
random
.
random
((
batch_size
,
size1
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
size2
,
size0
,
size1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
random
((
1
,
size2
)).
astype
(
"float32"
)
output
=
np
.
zeros
((
batch_size
,
size2
)).
astype
(
"float32"
)
for
i
in
range
(
size2
):
w_i
=
w
[
i
,
:,
:]
output
[:,
i
]
=
np
.
sum
(
np
.
matmul
(
a
,
w_i
)
*
b
,
axis
=
1
)
self
.
inputs
=
{
'X'
:
a
,
'Y'
:
b
,
'Weight'
:
w
,
'Bias'
:
bias
,
}
self
.
outputs
=
{
'Out'
:
output
+
bias
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
,
'Weight'
,
'Bias'
],
'Out'
)
class
TestBilinearTensorProductOp3
(
TestBilinearTensorProductOp
):
def
setUp
(
self
):
self
.
op_type
=
"bilinear_tensor_product"
batch_size
=
7
size0
=
4
size1
=
5
size2
=
6
a
=
np
.
random
.
random
((
batch_size
,
size0
)).
astype
(
"float32"
)
b
=
np
.
random
.
random
((
batch_size
,
size1
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
size2
,
size0
,
size1
)).
astype
(
"float32"
)
output
=
np
.
zeros
((
batch_size
,
size2
)).
astype
(
"float32"
)
for
i
in
range
(
size2
):
w_i
=
w
[
i
,
:,
:]
output
[:,
i
]
=
np
.
sum
(
np
.
matmul
(
a
,
w_i
)
*
b
,
axis
=
1
)
self
.
inputs
=
{
'X'
:
a
,
'Y'
:
b
,
'Weight'
:
w
}
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
(
[
'X'
,
'Y'
,
'Weight'
,
'Bias'
],
'Out'
,
max_relative_error
=
0.5
)
self
.
check_grad
([
'X'
,
'Y'
,
'Weight'
],
'Out'
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录